Application of decision trees for the identification of adaptability of students in online education

Descripción del Articulo

Due to the global pandemic by Covid-19, online education was established in student learning. However, the effectiveness of this modality, as well as the adaptability of the students, is something that may depend on some factors. In this sense, this research article presents a description of the use...

Descripción completa

Detalles Bibliográficos
Autores: Araoz Valencia, Luis Emanuel, Huaracha Condori, Walter, Quispe Quicaña, Víctor Raúl, Turpo Coila, Alex Ronaldo
Formato: artículo
Fecha de Publicación:2023
Institución:Universidad La Salle
Repositorio:Revistas - Universidad La Salle
Lenguaje:español
OAI Identifier:oai:ojs.revistas.ulasalle.edu.pe:article/113
Enlace del recurso:https://revistas.ulasalle.edu.pe/innosoft/article/view/113
https://doi.org/10.48168/innosoft.s12.a113
https://purl.org/42411/s12/a113
https://n2t.net/ark:/42411/s12/a113
Nivel de acceso:acceso abierto
Materia:Artificial Intelligence
Machine Learning
decision trees
Python
classification
online education
Inteligencia artificial
aprendizaje automático
árboles de decisión
clasificación
educación en línea
id REVUSALLE_c12e6186bbce28b1d43afe6f72804c54
oai_identifier_str oai:ojs.revistas.ulasalle.edu.pe:article/113
network_acronym_str REVUSALLE
network_name_str Revistas - Universidad La Salle
repository_id_str
spelling Application of decision trees for the identification of adaptability of students in online educationAplicación de árboles de decisión para la identificación de adaptabilidad de estudiantes en educación onlineAraoz Valencia, Luis EmanuelHuaracha Condori, WalterQuispe Quicaña, Víctor RaúlTurpo Coila, Alex RonaldoArtificial IntelligenceMachine Learningdecision treesPythonclassificationonline educationInteligencia artificialaprendizaje automáticoárboles de decisiónPythonclasificacióneducación en líneaDue to the global pandemic by Covid-19, online education was established in student learning. However, the effectiveness of this modality, as well as the adaptability of the students, is something that may depend on some factors. In this sense, this research article presents a description of the use of decision trees to determine the adaptability of students in online education, using a dataset of 1205 records with data such as the type of connection and internet, device, condition. financial, among other important data. Likewise, tools such as Google Colab, Python and popular libraries were used in similar works of Artificial Intelligence and Machine Learning.Debido a la pandemia mundial por Covid-19, se instauró la educación online en el aprendizaje de los estudiantes. Sin embargo, la efectividad de esta modalidad, así como la adaptabilidad de los estudiantes es algo que puede depender de algunos factores. En ese sentido, el presente artículo de investigación presenta una descripción del uso de árboles de decisión para determinar la adaptabilidad de estudiantes en la educación online, usando para ello un dataset de 1205 registros con datos como el tipo de conexión e internet, dispositivo, condición financiera, entre otros datos importantes. Así mismo, se empleó herramientas como Google Colab, Python y librerías populares en trabajos similares de Inteligencia artificial y Machine Learning. El modelo del árbol de decisión elaborado tuvo una precisión y exactitud de 92%.Universidad La Salle2023-09-30info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionJournal papertextArtículos originalesapplication/pdftext/htmlhttps://revistas.ulasalle.edu.pe/innosoft/article/view/113https://doi.org/10.48168/innosoft.s12.a113https://purl.org/42411/s12/a113https://n2t.net/ark:/42411/s12/a113Innovation and Software; Vol 4 No 2 (2023): September - February; 166-181Innovación y Software; Vol. 4 Núm. 2 (2023): Septiembre - Febrero; 166-1812708-09352708-0927https://doi.org/10.48168/innosoft.s12https://purl.org/42411/s12https://n2t.net/ark:/42411/s12reponame:Revistas - Universidad La Salleinstname:Universidad La Salleinstacron:USALLEspahttps://revistas.ulasalle.edu.pe/innosoft/article/view/113/143https://revistas.ulasalle.edu.pe/innosoft/article/view/113/157https://purl.org/42411/s12/a113/g143https://purl.org/42411/s12/a113/g157https://n2t.net/ark:/42411/s12/a113/g143https://n2t.net/ark:/42411/s12/a113/g15720232023Derechos de autor 2023 Innovación y Softwarehttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessoai:ojs.revistas.ulasalle.edu.pe:article/1132025-07-03T08:02:18Z
dc.title.none.fl_str_mv Application of decision trees for the identification of adaptability of students in online education
Aplicación de árboles de decisión para la identificación de adaptabilidad de estudiantes en educación online
title Application of decision trees for the identification of adaptability of students in online education
spellingShingle Application of decision trees for the identification of adaptability of students in online education
Araoz Valencia, Luis Emanuel
Artificial Intelligence
Machine Learning
decision trees
Python
classification
online education
Inteligencia artificial
aprendizaje automático
árboles de decisión
Python
clasificación
educación en línea
title_short Application of decision trees for the identification of adaptability of students in online education
title_full Application of decision trees for the identification of adaptability of students in online education
title_fullStr Application of decision trees for the identification of adaptability of students in online education
title_full_unstemmed Application of decision trees for the identification of adaptability of students in online education
title_sort Application of decision trees for the identification of adaptability of students in online education
dc.creator.none.fl_str_mv Araoz Valencia, Luis Emanuel
Huaracha Condori, Walter
Quispe Quicaña, Víctor Raúl
Turpo Coila, Alex Ronaldo
author Araoz Valencia, Luis Emanuel
author_facet Araoz Valencia, Luis Emanuel
Huaracha Condori, Walter
Quispe Quicaña, Víctor Raúl
Turpo Coila, Alex Ronaldo
author_role author
author2 Huaracha Condori, Walter
Quispe Quicaña, Víctor Raúl
Turpo Coila, Alex Ronaldo
author2_role author
author
author
dc.subject.none.fl_str_mv Artificial Intelligence
Machine Learning
decision trees
Python
classification
online education
Inteligencia artificial
aprendizaje automático
árboles de decisión
Python
clasificación
educación en línea
topic Artificial Intelligence
Machine Learning
decision trees
Python
classification
online education
Inteligencia artificial
aprendizaje automático
árboles de decisión
Python
clasificación
educación en línea
description Due to the global pandemic by Covid-19, online education was established in student learning. However, the effectiveness of this modality, as well as the adaptability of the students, is something that may depend on some factors. In this sense, this research article presents a description of the use of decision trees to determine the adaptability of students in online education, using a dataset of 1205 records with data such as the type of connection and internet, device, condition. financial, among other important data. Likewise, tools such as Google Colab, Python and popular libraries were used in similar works of Artificial Intelligence and Machine Learning.
publishDate 2023
dc.date.none.fl_str_mv 2023-09-30
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Journal paper
text
Artículos originales
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv https://revistas.ulasalle.edu.pe/innosoft/article/view/113
https://doi.org/10.48168/innosoft.s12.a113
https://purl.org/42411/s12/a113
https://n2t.net/ark:/42411/s12/a113
url https://revistas.ulasalle.edu.pe/innosoft/article/view/113
https://doi.org/10.48168/innosoft.s12.a113
https://purl.org/42411/s12/a113
https://n2t.net/ark:/42411/s12/a113
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv https://revistas.ulasalle.edu.pe/innosoft/article/view/113/143
https://revistas.ulasalle.edu.pe/innosoft/article/view/113/157
https://purl.org/42411/s12/a113/g143
https://purl.org/42411/s12/a113/g157
https://n2t.net/ark:/42411/s12/a113/g143
https://n2t.net/ark:/42411/s12/a113/g157
dc.rights.none.fl_str_mv Derechos de autor 2023 Innovación y Software
https://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Derechos de autor 2023 Innovación y Software
https://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
text/html
dc.coverage.none.fl_str_mv 2023
2023
dc.publisher.none.fl_str_mv Universidad La Salle
publisher.none.fl_str_mv Universidad La Salle
dc.source.none.fl_str_mv Innovation and Software; Vol 4 No 2 (2023): September - February; 166-181
Innovación y Software; Vol. 4 Núm. 2 (2023): Septiembre - Febrero; 166-181
2708-0935
2708-0927
https://doi.org/10.48168/innosoft.s12
https://purl.org/42411/s12
https://n2t.net/ark:/42411/s12
reponame:Revistas - Universidad La Salle
instname:Universidad La Salle
instacron:USALLE
instname_str Universidad La Salle
instacron_str USALLE
institution USALLE
reponame_str Revistas - Universidad La Salle
collection Revistas - Universidad La Salle
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1847163356058746880
score 13.065919
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).