Application of decision trees in the identification of fraudulent websites

Descripción del Articulo

Computer security is a very important area in any system that has an internet connection because there are fraudulent websites that can carry out criminal actions towards a person, organization or other entity. Therefore, it is necessary to be able to detect which websites are fraudulent before bein...

Descripción completa

Detalles Bibliográficos
Autores: Layme Fernández, Christian, Suri Canaza, José Manuel, Peña Ugarte, David Jose, Luna Quispe, Jhon Yoset
Formato: artículo
Fecha de Publicación:2022
Institución:Universidad La Salle
Repositorio:Revistas - Universidad La Salle
Lenguaje:español
OAI Identifier:oai:ojs.revistas.ulasalle.edu.pe:article/49
Enlace del recurso:https://revistas.ulasalle.edu.pe/innosoft/article/view/49
https://doi.org/10.48168/innosoft.s8.a49
https://purl.org/42411/s8/a49
https://n2t.net/ark:/42411/s8/a49
Nivel de acceso:acceso abierto
Materia:Decision Tree
Python
Computer Security
Web Sites
Árbol de Decisión
Seguridad Informática
Descripción
Sumario:Computer security is a very important area in any system that has an internet connection because there are fraudulent websites that can carry out criminal actions towards a person, organization or other entity. Therefore, it is necessary to be able to detect which websites are fraudulent before being able to enter them, for this an implementation was developed through Decision Trees with the Python language to detect and classify them as Legitimate, Suspicious and Fraudulent through 1353 cases that they rank websites.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).