Application of logistic regression for the prediction of demand by medical specialty in hospital outpatient consultation

Descripción del Articulo

In this work, the analysis of the information produced by the care of patients in the outpatient service was carried out. Studies have been reviewed that are related to the possible methodologies to be used, before choosing one in particular. At the Regional Hospital of Moquegua, since the beginning...

Descripción completa

Detalles Bibliográficos
Autores: Aquino Arcata, Rene, Cuevas Machaca, Ronald, Godoy Montoya, Luis, Rodríguez Puma, Heber
Formato: artículo
Fecha de Publicación:2021
Institución:Universidad La Salle
Repositorio:Revistas - Universidad La Salle
Lenguaje:español
OAI Identifier:oai:ojs.revistas.ulasalle.edu.pe:article/45
Enlace del recurso:https://revistas.ulasalle.edu.pe/innosoft/article/view/45
https://doi.org/10.48168/innosoft.s6.a45
https://purl.org/42411/s6/a45
https://n2t.net/ark:/42411/s6/a45
Nivel de acceso:acceso abierto
Materia:medical care
covid-19
prediction
logistic regression
atenciones médicas
predicción
regresión logística
id REVUSALLE_1d7019bb4667299c0824bea00af0a275
oai_identifier_str oai:ojs.revistas.ulasalle.edu.pe:article/45
network_acronym_str REVUSALLE
network_name_str Revistas - Universidad La Salle
repository_id_str
dc.title.none.fl_str_mv Application of logistic regression for the prediction of demand by medical specialty in hospital outpatient consultation
Aplicación de regresión logística para la predicción de demanda por especialidad médica en consulta externa hospitalaria
title Application of logistic regression for the prediction of demand by medical specialty in hospital outpatient consultation
spellingShingle Application of logistic regression for the prediction of demand by medical specialty in hospital outpatient consultation
Aquino Arcata, Rene
medical care
covid-19
prediction
logistic regression
atenciones médicas
covid-19
predicción
regresión logística
title_short Application of logistic regression for the prediction of demand by medical specialty in hospital outpatient consultation
title_full Application of logistic regression for the prediction of demand by medical specialty in hospital outpatient consultation
title_fullStr Application of logistic regression for the prediction of demand by medical specialty in hospital outpatient consultation
title_full_unstemmed Application of logistic regression for the prediction of demand by medical specialty in hospital outpatient consultation
title_sort Application of logistic regression for the prediction of demand by medical specialty in hospital outpatient consultation
dc.creator.none.fl_str_mv Aquino Arcata, Rene
Cuevas Machaca, Ronald
Godoy Montoya, Luis
Rodríguez Puma, Heber
author Aquino Arcata, Rene
author_facet Aquino Arcata, Rene
Cuevas Machaca, Ronald
Godoy Montoya, Luis
Rodríguez Puma, Heber
author_role author
author2 Cuevas Machaca, Ronald
Godoy Montoya, Luis
Rodríguez Puma, Heber
author2_role author
author
author
dc.subject.none.fl_str_mv medical care
covid-19
prediction
logistic regression
atenciones médicas
covid-19
predicción
regresión logística
topic medical care
covid-19
prediction
logistic regression
atenciones médicas
covid-19
predicción
regresión logística
description In this work, the analysis of the information produced by the care of patients in the outpatient service was carried out. Studies have been reviewed that are related to the possible methodologies to be used, before choosing one in particular. At the Regional Hospital of Moquegua, since the beginning of the health emergency due to Covid-19, care in the outpatient service was suspended, that is, from March 2020 to June 2021 there is no information on how much the demand would have been by specialty in said service. The objective of the work is to predict, based on age and sex variables, the number of female patients who will request an appointment for outpatient specialties, in a period of time. To solve the problem, the logistic regression technique was used, which initially allowed us to classify and determine the importance group on the basis of which our objective is oriented, taking sex and age as relevant variables. The results obtained from the initial procedure of the model did not show real correspondence to the expected prediction. The conclusions determine that the proposed model requires the inclusion of other input variables
publishDate 2021
dc.date.none.fl_str_mv 2021-09-30
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Journal paper
text
Artículos originales
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv https://revistas.ulasalle.edu.pe/innosoft/article/view/45
https://doi.org/10.48168/innosoft.s6.a45
https://purl.org/42411/s6/a45
https://n2t.net/ark:/42411/s6/a45
url https://revistas.ulasalle.edu.pe/innosoft/article/view/45
https://doi.org/10.48168/innosoft.s6.a45
https://purl.org/42411/s6/a45
https://n2t.net/ark:/42411/s6/a45
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv https://revistas.ulasalle.edu.pe/innosoft/article/view/45/43
https://revistas.ulasalle.edu.pe/innosoft/article/view/45/50
https://purl.org/42411/s6/a45/g43
https://purl.org/42411/s6/a45/g50
https://n2t.net/ark:/42411/s6/a45/g43
https://n2t.net/ark:/42411/s6/a45/g50
dc.rights.none.fl_str_mv Derechos de autor 2021 Innovación y Software
https://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Derechos de autor 2021 Innovación y Software
https://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
text/html
dc.coverage.none.fl_str_mv 2021
2021
dc.publisher.none.fl_str_mv Universidad La Salle
publisher.none.fl_str_mv Universidad La Salle
dc.source.none.fl_str_mv Innovation and Software; Vol 2 No 2 (2021): September - February; 44-59
Innovación y Software; Vol. 2 Núm. 2 (2021): Septiembre - Febrero; 44-59
2708-0935
2708-0927
https://doi.org/10.48168/innosoft.s6
https://purl.org/42411/s6
https://n2t.net/ark:/42411/s6
reponame:Revistas - Universidad La Salle
instname:Universidad La Salle
instacron:USALLE
instname_str Universidad La Salle
instacron_str USALLE
institution USALLE
reponame_str Revistas - Universidad La Salle
collection Revistas - Universidad La Salle
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1846529176632295424
spelling Application of logistic regression for the prediction of demand by medical specialty in hospital outpatient consultationAplicación de regresión logística para la predicción de demanda por especialidad médica en consulta externa hospitalariaAquino Arcata, ReneCuevas Machaca, RonaldGodoy Montoya, LuisRodríguez Puma, Hebermedical carecovid-19predictionlogistic regressionatenciones médicascovid-19predicciónregresión logísticaIn this work, the analysis of the information produced by the care of patients in the outpatient service was carried out. Studies have been reviewed that are related to the possible methodologies to be used, before choosing one in particular. At the Regional Hospital of Moquegua, since the beginning of the health emergency due to Covid-19, care in the outpatient service was suspended, that is, from March 2020 to June 2021 there is no information on how much the demand would have been by specialty in said service. The objective of the work is to predict, based on age and sex variables, the number of female patients who will request an appointment for outpatient specialties, in a period of time. To solve the problem, the logistic regression technique was used, which initially allowed us to classify and determine the importance group on the basis of which our objective is oriented, taking sex and age as relevant variables. The results obtained from the initial procedure of the model did not show real correspondence to the expected prediction. The conclusions determine that the proposed model requires the inclusion of other input variablesEn este trabajo se realizó el análisis de la información producto de la atención de pacientes en el servicio de consulta externa. Se han revisado trabajos que guardan relación con las metodologías posibles de utilizar, antes de la elección de una en particular. Posteriormente, se ha justificado y aplicado la metodología de regresión logística para evaluar, clasificar y pronosticar los resultados esperados conforme al objetivo trazado. En el Hospital Regional de Moquegua, desde el inicio de la emergencia sanitaria por el Covid-19, se suspendió la atención en el servicio de consulta externa, vale decir desde Marzo del 2020 a Junio 2021 no se tiene información de cuánto hubiese sido la demanda por especialidad en dicho servicio. El objetivo del trabajo es predecir, en base a variables de edad y sexo, la cantidad de pacientes de sexo femenino que solicitarán una cita para las especialidades de consulta externa, en un período de tiempo. Para la resolución del objetivo planteado, se aplicó el modelo de regresión logística de scikit-learn que, en un inicio ha permitido clasificar y determinar el grupo de importancia en base al cual está orientado nuestro objetivo, tomando como variables independientes y relevantes: el sexo y la edad. Los resultados iniciales obtenidos del procedimiento del modelo no mostraron correspondencia real a la predicción esperada . Las conclusiones determinan que el modelo propuesto requiere la inclusión de otras variables de entrada.Universidad La Salle2021-09-30info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionJournal papertextArtículos originalesapplication/pdftext/htmlhttps://revistas.ulasalle.edu.pe/innosoft/article/view/45https://doi.org/10.48168/innosoft.s6.a45https://purl.org/42411/s6/a45https://n2t.net/ark:/42411/s6/a45Innovation and Software; Vol 2 No 2 (2021): September - February; 44-59Innovación y Software; Vol. 2 Núm. 2 (2021): Septiembre - Febrero; 44-592708-09352708-0927https://doi.org/10.48168/innosoft.s6https://purl.org/42411/s6https://n2t.net/ark:/42411/s6reponame:Revistas - Universidad La Salleinstname:Universidad La Salleinstacron:USALLEspahttps://revistas.ulasalle.edu.pe/innosoft/article/view/45/43https://revistas.ulasalle.edu.pe/innosoft/article/view/45/50https://purl.org/42411/s6/a45/g43https://purl.org/42411/s6/a45/g50https://n2t.net/ark:/42411/s6/a45/g43https://n2t.net/ark:/42411/s6/a45/g5020212021Derechos de autor 2021 Innovación y Softwarehttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessoai:ojs.revistas.ulasalle.edu.pe:article/452023-05-24T20:31:59Z
score 13.046471
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).