Application of logistic regression for the prediction of demand by medical specialty in hospital outpatient consultation
Descripción del Articulo
In this work, the analysis of the information produced by the care of patients in the outpatient service was carried out. Studies have been reviewed that are related to the possible methodologies to be used, before choosing one in particular. At the Regional Hospital of Moquegua, since the beginning...
| Autores: | , , , |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2021 |
| Institución: | Universidad La Salle |
| Repositorio: | Revistas - Universidad La Salle |
| Lenguaje: | español |
| OAI Identifier: | oai:ojs.revistas.ulasalle.edu.pe:article/45 |
| Enlace del recurso: | https://revistas.ulasalle.edu.pe/innosoft/article/view/45 https://doi.org/10.48168/innosoft.s6.a45 https://purl.org/42411/s6/a45 https://n2t.net/ark:/42411/s6/a45 |
| Nivel de acceso: | acceso abierto |
| Materia: | medical care covid-19 prediction logistic regression atenciones médicas predicción regresión logística |
| id |
REVUSALLE_1d7019bb4667299c0824bea00af0a275 |
|---|---|
| oai_identifier_str |
oai:ojs.revistas.ulasalle.edu.pe:article/45 |
| network_acronym_str |
REVUSALLE |
| network_name_str |
Revistas - Universidad La Salle |
| repository_id_str |
|
| dc.title.none.fl_str_mv |
Application of logistic regression for the prediction of demand by medical specialty in hospital outpatient consultation Aplicación de regresión logística para la predicción de demanda por especialidad médica en consulta externa hospitalaria |
| title |
Application of logistic regression for the prediction of demand by medical specialty in hospital outpatient consultation |
| spellingShingle |
Application of logistic regression for the prediction of demand by medical specialty in hospital outpatient consultation Aquino Arcata, Rene medical care covid-19 prediction logistic regression atenciones médicas covid-19 predicción regresión logística |
| title_short |
Application of logistic regression for the prediction of demand by medical specialty in hospital outpatient consultation |
| title_full |
Application of logistic regression for the prediction of demand by medical specialty in hospital outpatient consultation |
| title_fullStr |
Application of logistic regression for the prediction of demand by medical specialty in hospital outpatient consultation |
| title_full_unstemmed |
Application of logistic regression for the prediction of demand by medical specialty in hospital outpatient consultation |
| title_sort |
Application of logistic regression for the prediction of demand by medical specialty in hospital outpatient consultation |
| dc.creator.none.fl_str_mv |
Aquino Arcata, Rene Cuevas Machaca, Ronald Godoy Montoya, Luis Rodríguez Puma, Heber |
| author |
Aquino Arcata, Rene |
| author_facet |
Aquino Arcata, Rene Cuevas Machaca, Ronald Godoy Montoya, Luis Rodríguez Puma, Heber |
| author_role |
author |
| author2 |
Cuevas Machaca, Ronald Godoy Montoya, Luis Rodríguez Puma, Heber |
| author2_role |
author author author |
| dc.subject.none.fl_str_mv |
medical care covid-19 prediction logistic regression atenciones médicas covid-19 predicción regresión logística |
| topic |
medical care covid-19 prediction logistic regression atenciones médicas covid-19 predicción regresión logística |
| description |
In this work, the analysis of the information produced by the care of patients in the outpatient service was carried out. Studies have been reviewed that are related to the possible methodologies to be used, before choosing one in particular. At the Regional Hospital of Moquegua, since the beginning of the health emergency due to Covid-19, care in the outpatient service was suspended, that is, from March 2020 to June 2021 there is no information on how much the demand would have been by specialty in said service. The objective of the work is to predict, based on age and sex variables, the number of female patients who will request an appointment for outpatient specialties, in a period of time. To solve the problem, the logistic regression technique was used, which initially allowed us to classify and determine the importance group on the basis of which our objective is oriented, taking sex and age as relevant variables. The results obtained from the initial procedure of the model did not show real correspondence to the expected prediction. The conclusions determine that the proposed model requires the inclusion of other input variables |
| publishDate |
2021 |
| dc.date.none.fl_str_mv |
2021-09-30 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Journal paper text Artículos originales |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
https://revistas.ulasalle.edu.pe/innosoft/article/view/45 https://doi.org/10.48168/innosoft.s6.a45 https://purl.org/42411/s6/a45 https://n2t.net/ark:/42411/s6/a45 |
| url |
https://revistas.ulasalle.edu.pe/innosoft/article/view/45 https://doi.org/10.48168/innosoft.s6.a45 https://purl.org/42411/s6/a45 https://n2t.net/ark:/42411/s6/a45 |
| dc.language.none.fl_str_mv |
spa |
| language |
spa |
| dc.relation.none.fl_str_mv |
https://revistas.ulasalle.edu.pe/innosoft/article/view/45/43 https://revistas.ulasalle.edu.pe/innosoft/article/view/45/50 https://purl.org/42411/s6/a45/g43 https://purl.org/42411/s6/a45/g50 https://n2t.net/ark:/42411/s6/a45/g43 https://n2t.net/ark:/42411/s6/a45/g50 |
| dc.rights.none.fl_str_mv |
Derechos de autor 2021 Innovación y Software https://creativecommons.org/licenses/by/4.0 info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Derechos de autor 2021 Innovación y Software https://creativecommons.org/licenses/by/4.0 |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf text/html |
| dc.coverage.none.fl_str_mv |
2021 2021 |
| dc.publisher.none.fl_str_mv |
Universidad La Salle |
| publisher.none.fl_str_mv |
Universidad La Salle |
| dc.source.none.fl_str_mv |
Innovation and Software; Vol 2 No 2 (2021): September - February; 44-59 Innovación y Software; Vol. 2 Núm. 2 (2021): Septiembre - Febrero; 44-59 2708-0935 2708-0927 https://doi.org/10.48168/innosoft.s6 https://purl.org/42411/s6 https://n2t.net/ark:/42411/s6 reponame:Revistas - Universidad La Salle instname:Universidad La Salle instacron:USALLE |
| instname_str |
Universidad La Salle |
| instacron_str |
USALLE |
| institution |
USALLE |
| reponame_str |
Revistas - Universidad La Salle |
| collection |
Revistas - Universidad La Salle |
| repository.name.fl_str_mv |
|
| repository.mail.fl_str_mv |
|
| _version_ |
1846529176632295424 |
| spelling |
Application of logistic regression for the prediction of demand by medical specialty in hospital outpatient consultationAplicación de regresión logística para la predicción de demanda por especialidad médica en consulta externa hospitalariaAquino Arcata, ReneCuevas Machaca, RonaldGodoy Montoya, LuisRodríguez Puma, Hebermedical carecovid-19predictionlogistic regressionatenciones médicascovid-19predicciónregresión logísticaIn this work, the analysis of the information produced by the care of patients in the outpatient service was carried out. Studies have been reviewed that are related to the possible methodologies to be used, before choosing one in particular. At the Regional Hospital of Moquegua, since the beginning of the health emergency due to Covid-19, care in the outpatient service was suspended, that is, from March 2020 to June 2021 there is no information on how much the demand would have been by specialty in said service. The objective of the work is to predict, based on age and sex variables, the number of female patients who will request an appointment for outpatient specialties, in a period of time. To solve the problem, the logistic regression technique was used, which initially allowed us to classify and determine the importance group on the basis of which our objective is oriented, taking sex and age as relevant variables. The results obtained from the initial procedure of the model did not show real correspondence to the expected prediction. The conclusions determine that the proposed model requires the inclusion of other input variablesEn este trabajo se realizó el análisis de la información producto de la atención de pacientes en el servicio de consulta externa. Se han revisado trabajos que guardan relación con las metodologías posibles de utilizar, antes de la elección de una en particular. Posteriormente, se ha justificado y aplicado la metodología de regresión logística para evaluar, clasificar y pronosticar los resultados esperados conforme al objetivo trazado. En el Hospital Regional de Moquegua, desde el inicio de la emergencia sanitaria por el Covid-19, se suspendió la atención en el servicio de consulta externa, vale decir desde Marzo del 2020 a Junio 2021 no se tiene información de cuánto hubiese sido la demanda por especialidad en dicho servicio. El objetivo del trabajo es predecir, en base a variables de edad y sexo, la cantidad de pacientes de sexo femenino que solicitarán una cita para las especialidades de consulta externa, en un período de tiempo. Para la resolución del objetivo planteado, se aplicó el modelo de regresión logística de scikit-learn que, en un inicio ha permitido clasificar y determinar el grupo de importancia en base al cual está orientado nuestro objetivo, tomando como variables independientes y relevantes: el sexo y la edad. Los resultados iniciales obtenidos del procedimiento del modelo no mostraron correspondencia real a la predicción esperada . Las conclusiones determinan que el modelo propuesto requiere la inclusión de otras variables de entrada.Universidad La Salle2021-09-30info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionJournal papertextArtículos originalesapplication/pdftext/htmlhttps://revistas.ulasalle.edu.pe/innosoft/article/view/45https://doi.org/10.48168/innosoft.s6.a45https://purl.org/42411/s6/a45https://n2t.net/ark:/42411/s6/a45Innovation and Software; Vol 2 No 2 (2021): September - February; 44-59Innovación y Software; Vol. 2 Núm. 2 (2021): Septiembre - Febrero; 44-592708-09352708-0927https://doi.org/10.48168/innosoft.s6https://purl.org/42411/s6https://n2t.net/ark:/42411/s6reponame:Revistas - Universidad La Salleinstname:Universidad La Salleinstacron:USALLEspahttps://revistas.ulasalle.edu.pe/innosoft/article/view/45/43https://revistas.ulasalle.edu.pe/innosoft/article/view/45/50https://purl.org/42411/s6/a45/g43https://purl.org/42411/s6/a45/g50https://n2t.net/ark:/42411/s6/a45/g43https://n2t.net/ark:/42411/s6/a45/g5020212021Derechos de autor 2021 Innovación y Softwarehttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessoai:ojs.revistas.ulasalle.edu.pe:article/452023-05-24T20:31:59Z |
| score |
13.046471 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).