GDP Nowcasting with Machine Learning and Unstructured Data

Descripción del Articulo

Nowcasting models based on machine learning (ML) algorithms deliver a noteworthy advantage for decision-making in the public and private sectors due to their flexibility and ability to handle large amounts of data. This article introduces real-time forecasting models for the monthly Peruvian GDP gro...

Descripción completa

Detalles Bibliográficos
Autores: Tenorio, Juan, Pérez, Wilder
Formato: artículo
Fecha de Publicación:2025
Institución:Universidad del Pacífico
Repositorio:Revistas - Universidad del Pacífico
Lenguaje:inglés
OAI Identifier:oai:ojs.revistas.up.edu.pe:article/2189
Enlace del recurso:https://revistas.up.edu.pe/index.php/apuntes/article/view/2189
Nivel de acceso:acceso abierto
Materia:nowcasting
machine learning
GDP growth
aprendizaje automático
indicador mensual
id REVUP_971e6a26baf3cf9d7dee2c46d7d761c4
oai_identifier_str oai:ojs.revistas.up.edu.pe:article/2189
network_acronym_str REVUP
network_name_str Revistas - Universidad del Pacífico
repository_id_str
spelling GDP Nowcasting with Machine Learning and Unstructured DataNowcasting del PBI mensual peruano con machine learning y datos no estructuradosTenorio, JuanPérez, Wildernowcastingmachine learningGDP growthnowcastingaprendizaje automáticoindicador mensualNowcasting models based on machine learning (ML) algorithms deliver a noteworthy advantage for decision-making in the public and private sectors due to their flexibility and ability to handle large amounts of data. This article introduces real-time forecasting models for the monthly Peruvian GDP growth rate. These models merge structured macroeconomic indicators with high-frequency unstructured sentiment variables. The analysis spans January 2007 to May 2023, encompassing a set of 91 leading economic indicators. Six ML algorithms were evaluated to identify the most effective predictors for each model. The findings underscore the remarkable capability of ML models to yield more precise and foresighted predictions compared to conventional time series models. Notably, the gradient boosting machine, LASSO, and elastic net models emerged as standout performers, achieving a reduction in prediction errors of 20% to 25% compared to autoregression and various specifications of dynamic factor model. These results could be influenced by the analysis period, which includes crisis events featuring high uncertainty, where ML models with unstructured data improve significance.Los modelos de nowcasting basados en algoritmos de Machine Learning (ML) ofrecen una ventaja notable para la toma de decisiones en los sectores público y privado debido a su flexibilidad y capacidad para manejar grandes cantidades de datos. Este documento presenta modelos de pronóstico en tiempo real para la tasa de crecimiento mensual del PIB peruano. Estos modelos combinan indicadores macroeconómicos estructurados con variables de sentimiento no estructurados de alta frecuencia. El análisis comprende desde enero de 2007 hasta mayo de 2023, abarcando un conjunto de 91 indicadores económicos principales. Se evaluaron seis algoritmos de ML para identificar los predictores más eficaces de cada modelo. Los resultados subrayan la notable capacidad de los modelos de ML para producir predicciones más precisas y previsoras que los modelos convencionales de series temporales. En particular, Gradient Boosting Machine, LASSO y Elastic Net destacaron por sus resultados, logrando una reducción de los errores de predicción de entre el 20% y el 25% en comparación con los modelos AR y varias especificaciones de DFM. Estos resultados podrían estar influenciados por el periodo de análisis, que incluye acontecimientos de crisis con un alto grado de incertidumbre, en los que los modelos ML con datos no estructurados mejoran la significación.Universidad del Pacífico2025-07-30info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://revistas.up.edu.pe/index.php/apuntes/article/view/2189Apuntes. Social Sciences Journal; Vol. 52 No. 99 (2025): Apuntes 99Apuntes. Revista de ciencias sociales; Vol. 52 Núm. 99 (2025): Apuntes 992223-17570252-1865reponame:Revistas - Universidad del Pacíficoinstname:Universidad del Pacíficoinstacron:UPenghttps://revistas.up.edu.pe/index.php/apuntes/article/view/2189/1845Derechos de autor 2025 Juan Tenoriohttp://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessoai:ojs.revistas.up.edu.pe:article/21892025-07-30T20:16:32Z
dc.title.none.fl_str_mv GDP Nowcasting with Machine Learning and Unstructured Data
Nowcasting del PBI mensual peruano con machine learning y datos no estructurados
title GDP Nowcasting with Machine Learning and Unstructured Data
spellingShingle GDP Nowcasting with Machine Learning and Unstructured Data
Tenorio, Juan
nowcasting
machine learning
GDP growth
nowcasting
aprendizaje automático
indicador mensual
title_short GDP Nowcasting with Machine Learning and Unstructured Data
title_full GDP Nowcasting with Machine Learning and Unstructured Data
title_fullStr GDP Nowcasting with Machine Learning and Unstructured Data
title_full_unstemmed GDP Nowcasting with Machine Learning and Unstructured Data
title_sort GDP Nowcasting with Machine Learning and Unstructured Data
dc.creator.none.fl_str_mv Tenorio, Juan
Pérez, Wilder
author Tenorio, Juan
author_facet Tenorio, Juan
Pérez, Wilder
author_role author
author2 Pérez, Wilder
author2_role author
dc.subject.none.fl_str_mv nowcasting
machine learning
GDP growth
nowcasting
aprendizaje automático
indicador mensual
topic nowcasting
machine learning
GDP growth
nowcasting
aprendizaje automático
indicador mensual
description Nowcasting models based on machine learning (ML) algorithms deliver a noteworthy advantage for decision-making in the public and private sectors due to their flexibility and ability to handle large amounts of data. This article introduces real-time forecasting models for the monthly Peruvian GDP growth rate. These models merge structured macroeconomic indicators with high-frequency unstructured sentiment variables. The analysis spans January 2007 to May 2023, encompassing a set of 91 leading economic indicators. Six ML algorithms were evaluated to identify the most effective predictors for each model. The findings underscore the remarkable capability of ML models to yield more precise and foresighted predictions compared to conventional time series models. Notably, the gradient boosting machine, LASSO, and elastic net models emerged as standout performers, achieving a reduction in prediction errors of 20% to 25% compared to autoregression and various specifications of dynamic factor model. These results could be influenced by the analysis period, which includes crisis events featuring high uncertainty, where ML models with unstructured data improve significance.
publishDate 2025
dc.date.none.fl_str_mv 2025-07-30
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv https://revistas.up.edu.pe/index.php/apuntes/article/view/2189
url https://revistas.up.edu.pe/index.php/apuntes/article/view/2189
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://revistas.up.edu.pe/index.php/apuntes/article/view/2189/1845
dc.rights.none.fl_str_mv Derechos de autor 2025 Juan Tenorio
http://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Derechos de autor 2025 Juan Tenorio
http://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad del Pacífico
publisher.none.fl_str_mv Universidad del Pacífico
dc.source.none.fl_str_mv Apuntes. Social Sciences Journal; Vol. 52 No. 99 (2025): Apuntes 99
Apuntes. Revista de ciencias sociales; Vol. 52 Núm. 99 (2025): Apuntes 99
2223-1757
0252-1865
reponame:Revistas - Universidad del Pacífico
instname:Universidad del Pacífico
instacron:UP
instname_str Universidad del Pacífico
instacron_str UP
institution UP
reponame_str Revistas - Universidad del Pacífico
collection Revistas - Universidad del Pacífico
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1840360911445950464
score 13.95948
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).