Detection of COVID-19 from radiographic images using convolutional neural networks: A bibliographical review

Descripción del Articulo

The crisis generated on the planet by COVID-19 (SARS-CoV-2) caused a devastating effect worldwide, and for this reason, an effective detection of the possible contagion of infected patients was needed. In this sense, the present work gathers information from diagnostic tools that use Deep Learning (...

Descripción completa

Detalles Bibliográficos
Autores: Cornejo Montoya, Yan An, García Cornejo, Sofía Alejandra
Formato: artículo
Fecha de Publicación:2022
Institución:Universidad Privada de Tacna
Repositorio:Revistas - Universidad Privada de Tacna
Lenguaje:español
OAI Identifier:oai:revistas.upt.edu.pe:article/626
Enlace del recurso:https://revistas.upt.edu.pe/ojs/index.php/ingenieria/article/view/626
Nivel de acceso:acceso abierto
Materia:Aprendizaje profundo
inteligencia artificial
redes neuronales convolucionales
aprendizaje automático
Deep learning
artificial intelligence
convolutional neural network
machine learning
id REVUPT_de2a138fe0101b0c20746c6559a5107a
oai_identifier_str oai:revistas.upt.edu.pe:article/626
network_acronym_str REVUPT
network_name_str Revistas - Universidad Privada de Tacna
repository_id_str
dc.title.none.fl_str_mv Detection of COVID-19 from radiographic images using convolutional neural networks: A bibliographical review
Detección de COVID-19 a partir de imágenes radiográficas utilizando redes neuronales convolucionales: una revisión bibliográfica
title Detection of COVID-19 from radiographic images using convolutional neural networks: A bibliographical review
spellingShingle Detection of COVID-19 from radiographic images using convolutional neural networks: A bibliographical review
Cornejo Montoya, Yan An
Aprendizaje profundo
inteligencia artificial
redes neuronales convolucionales
aprendizaje automático
Deep learning
artificial intelligence
convolutional neural network
machine learning
title_short Detection of COVID-19 from radiographic images using convolutional neural networks: A bibliographical review
title_full Detection of COVID-19 from radiographic images using convolutional neural networks: A bibliographical review
title_fullStr Detection of COVID-19 from radiographic images using convolutional neural networks: A bibliographical review
title_full_unstemmed Detection of COVID-19 from radiographic images using convolutional neural networks: A bibliographical review
title_sort Detection of COVID-19 from radiographic images using convolutional neural networks: A bibliographical review
dc.creator.none.fl_str_mv Cornejo Montoya, Yan An
García Cornejo, Sofía Alejandra
author Cornejo Montoya, Yan An
author_facet Cornejo Montoya, Yan An
García Cornejo, Sofía Alejandra
author_role author
author2 García Cornejo, Sofía Alejandra
author2_role author
dc.subject.none.fl_str_mv Aprendizaje profundo
inteligencia artificial
redes neuronales convolucionales
aprendizaje automático
Deep learning
artificial intelligence
convolutional neural network
machine learning
topic Aprendizaje profundo
inteligencia artificial
redes neuronales convolucionales
aprendizaje automático
Deep learning
artificial intelligence
convolutional neural network
machine learning
description The crisis generated on the planet by COVID-19 (SARS-CoV-2) caused a devastating effect worldwide, and for this reason, an effective detection of the possible contagion of infected patients was needed. In this sense, the present work gathers information from diagnostic tools that use Deep Learning (DL) in medical images to detect COVID-19. It is a descriptive observational study. In addition, the purpose of this study is to analyze and compare how DL applied to radiographic images optimizes resources and management of results in an objective and timely manner, showing a favorable cooperation between the health, institutional and technological sectors. In such a way that Convolutional Neural Networks (CNN) in their different algorithms are the chosen architecture in the biomedical area for the diagnosis of diseases applied to the analysis of radiographic images, which purpose is to help the medical service to lighten the attention of patients with an early detection of symptoms and risk factors of the COVID-19 virus, due to the number of symptomatic and asymptomatic patients. The results of this Systematic Literature Review show the degree of accuracy of the use of neural algorithms when evaluating medical images. Therefore, it is concluded that CNNs have generated very useful results to issue a timely diagnosis when validating positive cases of COVID-19, but it is evident that in most of the reviewed works, an evaluation protocol that overestimates the results has been applied.
publishDate 2022
dc.date.none.fl_str_mv 2022-07-08
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv https://revistas.upt.edu.pe/ojs/index.php/ingenieria/article/view/626
10.47796/ing.v4i0.626
url https://revistas.upt.edu.pe/ojs/index.php/ingenieria/article/view/626
identifier_str_mv 10.47796/ing.v4i0.626
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv https://revistas.upt.edu.pe/ojs/index.php/ingenieria/article/view/626/622
https://revistas.upt.edu.pe/ojs/index.php/ingenieria/article/view/626/623
dc.rights.none.fl_str_mv Derechos de autor 2022 Yan An Cornejo Montoya, Sofía Alejandra García Cornejo
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Derechos de autor 2022 Yan An Cornejo Montoya, Sofía Alejandra García Cornejo
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
text/html
dc.publisher.none.fl_str_mv UNIVERSIDAD PRIVADA DE TACNA
publisher.none.fl_str_mv UNIVERSIDAD PRIVADA DE TACNA
dc.source.none.fl_str_mv INGENIERÍA INVESTIGA; Vol. 4 (2022): Ingeniería Investiga
INGENIERÍA INVESTIGA; Vol. 4 (2022): Ingeniería Investiga
2708-3039
10.47796/ing.v4i0
reponame:Revistas - Universidad Privada de Tacna
instname:Universidad Privada de Tacna
instacron:UPT
instname_str Universidad Privada de Tacna
instacron_str UPT
institution UPT
reponame_str Revistas - Universidad Privada de Tacna
collection Revistas - Universidad Privada de Tacna
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1846791868019376128
spelling Detection of COVID-19 from radiographic images using convolutional neural networks: A bibliographical reviewDetección de COVID-19 a partir de imágenes radiográficas utilizando redes neuronales convolucionales: una revisión bibliográficaCornejo Montoya, Yan AnGarcía Cornejo, Sofía AlejandraAprendizaje profundointeligencia artificialredes neuronales convolucionalesaprendizaje automáticoDeep learningartificial intelligenceconvolutional neural networkmachine learningThe crisis generated on the planet by COVID-19 (SARS-CoV-2) caused a devastating effect worldwide, and for this reason, an effective detection of the possible contagion of infected patients was needed. In this sense, the present work gathers information from diagnostic tools that use Deep Learning (DL) in medical images to detect COVID-19. It is a descriptive observational study. In addition, the purpose of this study is to analyze and compare how DL applied to radiographic images optimizes resources and management of results in an objective and timely manner, showing a favorable cooperation between the health, institutional and technological sectors. In such a way that Convolutional Neural Networks (CNN) in their different algorithms are the chosen architecture in the biomedical area for the diagnosis of diseases applied to the analysis of radiographic images, which purpose is to help the medical service to lighten the attention of patients with an early detection of symptoms and risk factors of the COVID-19 virus, due to the number of symptomatic and asymptomatic patients. The results of this Systematic Literature Review show the degree of accuracy of the use of neural algorithms when evaluating medical images. Therefore, it is concluded that CNNs have generated very useful results to issue a timely diagnosis when validating positive cases of COVID-19, but it is evident that in most of the reviewed works, an evaluation protocol that overestimates the results has been applied.La crisis generada en el planeta por la COVID-19 (SARS-CoV-2) ocasionó un efecto devastador a nivel mundial y por tal razón se necesitó una detección eficaz de los posibles contagios de los pacientes infectados. En tal sentido, el presente trabajo recopila información de herramientas de diagnóstico que utilizan Deep Learning (DL) en imágenes médicas para detectar COVID-19. Es un estudio observacional descriptivo. Además, el propósito es analizar y comparar como el DL aplicado a imágenes radiográficas optimiza recursos y manejo de resultados de manera objetiva y oportuna, evidenciando una cooperación favorable entre sector sanitario, institucional y tecnológico. De esta manera, las Redes Neuronales Convolucionales (CNN), en sus diferentes algoritmos, son la arquitectura elegida en el área biomédica para el diagnóstico de enfermedades aplicadas al análisis de imágenes radiográficas, cuya finalidad es ayudar al servicio médico en aligerar la atención de pacientes con una detección temprana de síntomas y factores de riesgo del virus COVID-19, debido a la cantidad de pacientes sintomáticos y asintomáticos. Los resultados de esta Revisión Sistemática de Literatura muestran el grado de precisión del uso de algoritmos neuronales al evaluar las imágenes médicas. Por tanto, se concluye que las CNN han generado resultados muy útiles para emitir un diagnóstico oportuno al momento de validar casos positivos de COVID-19, pero se evidencia que en la mayoría de trabajos revisados, se ha aplicado un protocolo de evaluación que sobreestima los resultados.UNIVERSIDAD PRIVADA DE TACNA2022-07-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdftext/htmlhttps://revistas.upt.edu.pe/ojs/index.php/ingenieria/article/view/62610.47796/ing.v4i0.626INGENIERÍA INVESTIGA; Vol. 4 (2022): Ingeniería InvestigaINGENIERÍA INVESTIGA; Vol. 4 (2022): Ingeniería Investiga2708-303910.47796/ing.v4i0reponame:Revistas - Universidad Privada de Tacnainstname:Universidad Privada de Tacnainstacron:UPTspahttps://revistas.upt.edu.pe/ojs/index.php/ingenieria/article/view/626/622https://revistas.upt.edu.pe/ojs/index.php/ingenieria/article/view/626/623Derechos de autor 2022 Yan An Cornejo Montoya, Sofía Alejandra García Cornejoinfo:eu-repo/semantics/openAccessoai:revistas.upt.edu.pe:article/6262022-07-11T03:46:24Z
score 12.8889065
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).