Detection of COVID-19 from radiographic images using convolutional neural networks: A bibliographical review
Descripción del Articulo
The crisis generated on the planet by COVID-19 (SARS-CoV-2) caused a devastating effect worldwide, and for this reason, an effective detection of the possible contagion of infected patients was needed. In this sense, the present work gathers information from diagnostic tools that use Deep Learning (...
| Autores: | , |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2022 |
| Institución: | Universidad Privada de Tacna |
| Repositorio: | Revistas - Universidad Privada de Tacna |
| Lenguaje: | español |
| OAI Identifier: | oai:revistas.upt.edu.pe:article/626 |
| Enlace del recurso: | https://revistas.upt.edu.pe/ojs/index.php/ingenieria/article/view/626 |
| Nivel de acceso: | acceso abierto |
| Materia: | Aprendizaje profundo inteligencia artificial redes neuronales convolucionales aprendizaje automático Deep learning artificial intelligence convolutional neural network machine learning |
| id |
REVUPT_de2a138fe0101b0c20746c6559a5107a |
|---|---|
| oai_identifier_str |
oai:revistas.upt.edu.pe:article/626 |
| network_acronym_str |
REVUPT |
| network_name_str |
Revistas - Universidad Privada de Tacna |
| repository_id_str |
|
| dc.title.none.fl_str_mv |
Detection of COVID-19 from radiographic images using convolutional neural networks: A bibliographical review Detección de COVID-19 a partir de imágenes radiográficas utilizando redes neuronales convolucionales: una revisión bibliográfica |
| title |
Detection of COVID-19 from radiographic images using convolutional neural networks: A bibliographical review |
| spellingShingle |
Detection of COVID-19 from radiographic images using convolutional neural networks: A bibliographical review Cornejo Montoya, Yan An Aprendizaje profundo inteligencia artificial redes neuronales convolucionales aprendizaje automático Deep learning artificial intelligence convolutional neural network machine learning |
| title_short |
Detection of COVID-19 from radiographic images using convolutional neural networks: A bibliographical review |
| title_full |
Detection of COVID-19 from radiographic images using convolutional neural networks: A bibliographical review |
| title_fullStr |
Detection of COVID-19 from radiographic images using convolutional neural networks: A bibliographical review |
| title_full_unstemmed |
Detection of COVID-19 from radiographic images using convolutional neural networks: A bibliographical review |
| title_sort |
Detection of COVID-19 from radiographic images using convolutional neural networks: A bibliographical review |
| dc.creator.none.fl_str_mv |
Cornejo Montoya, Yan An García Cornejo, Sofía Alejandra |
| author |
Cornejo Montoya, Yan An |
| author_facet |
Cornejo Montoya, Yan An García Cornejo, Sofía Alejandra |
| author_role |
author |
| author2 |
García Cornejo, Sofía Alejandra |
| author2_role |
author |
| dc.subject.none.fl_str_mv |
Aprendizaje profundo inteligencia artificial redes neuronales convolucionales aprendizaje automático Deep learning artificial intelligence convolutional neural network machine learning |
| topic |
Aprendizaje profundo inteligencia artificial redes neuronales convolucionales aprendizaje automático Deep learning artificial intelligence convolutional neural network machine learning |
| description |
The crisis generated on the planet by COVID-19 (SARS-CoV-2) caused a devastating effect worldwide, and for this reason, an effective detection of the possible contagion of infected patients was needed. In this sense, the present work gathers information from diagnostic tools that use Deep Learning (DL) in medical images to detect COVID-19. It is a descriptive observational study. In addition, the purpose of this study is to analyze and compare how DL applied to radiographic images optimizes resources and management of results in an objective and timely manner, showing a favorable cooperation between the health, institutional and technological sectors. In such a way that Convolutional Neural Networks (CNN) in their different algorithms are the chosen architecture in the biomedical area for the diagnosis of diseases applied to the analysis of radiographic images, which purpose is to help the medical service to lighten the attention of patients with an early detection of symptoms and risk factors of the COVID-19 virus, due to the number of symptomatic and asymptomatic patients. The results of this Systematic Literature Review show the degree of accuracy of the use of neural algorithms when evaluating medical images. Therefore, it is concluded that CNNs have generated very useful results to issue a timely diagnosis when validating positive cases of COVID-19, but it is evident that in most of the reviewed works, an evaluation protocol that overestimates the results has been applied. |
| publishDate |
2022 |
| dc.date.none.fl_str_mv |
2022-07-08 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
https://revistas.upt.edu.pe/ojs/index.php/ingenieria/article/view/626 10.47796/ing.v4i0.626 |
| url |
https://revistas.upt.edu.pe/ojs/index.php/ingenieria/article/view/626 |
| identifier_str_mv |
10.47796/ing.v4i0.626 |
| dc.language.none.fl_str_mv |
spa |
| language |
spa |
| dc.relation.none.fl_str_mv |
https://revistas.upt.edu.pe/ojs/index.php/ingenieria/article/view/626/622 https://revistas.upt.edu.pe/ojs/index.php/ingenieria/article/view/626/623 |
| dc.rights.none.fl_str_mv |
Derechos de autor 2022 Yan An Cornejo Montoya, Sofía Alejandra García Cornejo info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Derechos de autor 2022 Yan An Cornejo Montoya, Sofía Alejandra García Cornejo |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf text/html |
| dc.publisher.none.fl_str_mv |
UNIVERSIDAD PRIVADA DE TACNA |
| publisher.none.fl_str_mv |
UNIVERSIDAD PRIVADA DE TACNA |
| dc.source.none.fl_str_mv |
INGENIERÍA INVESTIGA; Vol. 4 (2022): Ingeniería Investiga INGENIERÍA INVESTIGA; Vol. 4 (2022): Ingeniería Investiga 2708-3039 10.47796/ing.v4i0 reponame:Revistas - Universidad Privada de Tacna instname:Universidad Privada de Tacna instacron:UPT |
| instname_str |
Universidad Privada de Tacna |
| instacron_str |
UPT |
| institution |
UPT |
| reponame_str |
Revistas - Universidad Privada de Tacna |
| collection |
Revistas - Universidad Privada de Tacna |
| repository.name.fl_str_mv |
|
| repository.mail.fl_str_mv |
|
| _version_ |
1846791868019376128 |
| spelling |
Detection of COVID-19 from radiographic images using convolutional neural networks: A bibliographical reviewDetección de COVID-19 a partir de imágenes radiográficas utilizando redes neuronales convolucionales: una revisión bibliográficaCornejo Montoya, Yan AnGarcía Cornejo, Sofía AlejandraAprendizaje profundointeligencia artificialredes neuronales convolucionalesaprendizaje automáticoDeep learningartificial intelligenceconvolutional neural networkmachine learningThe crisis generated on the planet by COVID-19 (SARS-CoV-2) caused a devastating effect worldwide, and for this reason, an effective detection of the possible contagion of infected patients was needed. In this sense, the present work gathers information from diagnostic tools that use Deep Learning (DL) in medical images to detect COVID-19. It is a descriptive observational study. In addition, the purpose of this study is to analyze and compare how DL applied to radiographic images optimizes resources and management of results in an objective and timely manner, showing a favorable cooperation between the health, institutional and technological sectors. In such a way that Convolutional Neural Networks (CNN) in their different algorithms are the chosen architecture in the biomedical area for the diagnosis of diseases applied to the analysis of radiographic images, which purpose is to help the medical service to lighten the attention of patients with an early detection of symptoms and risk factors of the COVID-19 virus, due to the number of symptomatic and asymptomatic patients. The results of this Systematic Literature Review show the degree of accuracy of the use of neural algorithms when evaluating medical images. Therefore, it is concluded that CNNs have generated very useful results to issue a timely diagnosis when validating positive cases of COVID-19, but it is evident that in most of the reviewed works, an evaluation protocol that overestimates the results has been applied.La crisis generada en el planeta por la COVID-19 (SARS-CoV-2) ocasionó un efecto devastador a nivel mundial y por tal razón se necesitó una detección eficaz de los posibles contagios de los pacientes infectados. En tal sentido, el presente trabajo recopila información de herramientas de diagnóstico que utilizan Deep Learning (DL) en imágenes médicas para detectar COVID-19. Es un estudio observacional descriptivo. Además, el propósito es analizar y comparar como el DL aplicado a imágenes radiográficas optimiza recursos y manejo de resultados de manera objetiva y oportuna, evidenciando una cooperación favorable entre sector sanitario, institucional y tecnológico. De esta manera, las Redes Neuronales Convolucionales (CNN), en sus diferentes algoritmos, son la arquitectura elegida en el área biomédica para el diagnóstico de enfermedades aplicadas al análisis de imágenes radiográficas, cuya finalidad es ayudar al servicio médico en aligerar la atención de pacientes con una detección temprana de síntomas y factores de riesgo del virus COVID-19, debido a la cantidad de pacientes sintomáticos y asintomáticos. Los resultados de esta Revisión Sistemática de Literatura muestran el grado de precisión del uso de algoritmos neuronales al evaluar las imágenes médicas. Por tanto, se concluye que las CNN han generado resultados muy útiles para emitir un diagnóstico oportuno al momento de validar casos positivos de COVID-19, pero se evidencia que en la mayoría de trabajos revisados, se ha aplicado un protocolo de evaluación que sobreestima los resultados.UNIVERSIDAD PRIVADA DE TACNA2022-07-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdftext/htmlhttps://revistas.upt.edu.pe/ojs/index.php/ingenieria/article/view/62610.47796/ing.v4i0.626INGENIERÍA INVESTIGA; Vol. 4 (2022): Ingeniería InvestigaINGENIERÍA INVESTIGA; Vol. 4 (2022): Ingeniería Investiga2708-303910.47796/ing.v4i0reponame:Revistas - Universidad Privada de Tacnainstname:Universidad Privada de Tacnainstacron:UPTspahttps://revistas.upt.edu.pe/ojs/index.php/ingenieria/article/view/626/622https://revistas.upt.edu.pe/ojs/index.php/ingenieria/article/view/626/623Derechos de autor 2022 Yan An Cornejo Montoya, Sofía Alejandra García Cornejoinfo:eu-repo/semantics/openAccessoai:revistas.upt.edu.pe:article/6262022-07-11T03:46:24Z |
| score |
12.8889065 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).