Exportación Completada — 

Comparison of Expectimax and Monte Carlo algorithms in Solving the online 2048 game

Descripción del Articulo

In this work, two search algorithms Expectimax and Monte Carlo Tree Search (MCTS) were developed to solve the well-known “2048" puzzle online-game and compare their results. In both cases, five heuristics were employed to obtain favorable tile positions within the game. These heuristics were co...

Descripción completa

Detalles Bibliográficos
Autores: Noa Yarasca, Efrain, Nguyen, khoi
Formato: artículo
Fecha de Publicación:2018
Institución:Universidad Nacional Mayor de San Marcos
Repositorio:Revistas - Universidad Nacional Mayor de San Marcos
Lenguaje:español
OAI Identifier:oai:ojs.csi.unmsm:article/15069
Enlace del recurso:https://revistasinvestigacion.unmsm.edu.pe/index.php/matema/article/view/15069
Nivel de acceso:acceso abierto
Materia:2048 game
Expectimax algorithm
Monte Carlo algorithm
heuristics
Juego 2048
Algoritmo Expectimax
Monte Carlo
heuristicas
Descripción
Sumario:In this work, two search algorithms Expectimax and Monte Carlo Tree Search (MCTS) were developed to solve the well-known “2048" puzzle online-game and compare their results. In both cases, five heuristics were employed to obtain favorable tile positions within the game. These heuristics were combined to maximize the game-score in all possible board positions. As a result, the game-score, the maximum value of tile obtained, and the computing time employed in solving the game are shown. In addition, the efficiency of each algorithm and its sub-cases are presented. This research concludes by arguing that Monte Carlo Tree Search was more efficient in higher score than Expectimax algorithm, although in a longer time. Increments in level of depth-search in Expectimax and number of moves in MCTS do not necessarily resulted in obtaining higher score.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).