Comparison of Expectimax and Monte Carlo algorithms in Solving the online 2048 game

Descripción del Articulo

In this work, two search algorithms Expectimax and Monte Carlo Tree Search (MCTS) were developed to solve the well-known “2048" puzzle online-game and compare their results. In both cases, five heuristics were employed to obtain favorable tile positions within the game. These heuristics were co...

Descripción completa

Detalles Bibliográficos
Autores: Noa Yarasca, Efrain, Nguyen, khoi
Formato: artículo
Fecha de Publicación:2018
Institución:Universidad Nacional Mayor de San Marcos
Repositorio:Revistas - Universidad Nacional Mayor de San Marcos
Lenguaje:español
OAI Identifier:oai:ojs.csi.unmsm:article/15069
Enlace del recurso:https://revistasinvestigacion.unmsm.edu.pe/index.php/matema/article/view/15069
Nivel de acceso:acceso abierto
Materia:2048 game
Expectimax algorithm
Monte Carlo algorithm
heuristics
Juego 2048
Algoritmo Expectimax
Monte Carlo
heuristicas
id REVUNMSM_f42e865baf78d1d6557b9983eefdc1d6
oai_identifier_str oai:ojs.csi.unmsm:article/15069
network_acronym_str REVUNMSM
network_name_str Revistas - Universidad Nacional Mayor de San Marcos
repository_id_str
spelling Comparison of Expectimax and Monte Carlo algorithms in Solving the online 2048 gameComparación de los algoritmos Expectimax y Monte Carlo en la solución del juego en línea 2048Noa Yarasca, EfrainNguyen, khoi2048 gameExpectimax algorithmMonte Carlo algorithmheuristicsJuego 2048Algoritmo ExpectimaxMonte CarloheuristicasIn this work, two search algorithms Expectimax and Monte Carlo Tree Search (MCTS) were developed to solve the well-known “2048" puzzle online-game and compare their results. In both cases, five heuristics were employed to obtain favorable tile positions within the game. These heuristics were combined to maximize the game-score in all possible board positions. As a result, the game-score, the maximum value of tile obtained, and the computing time employed in solving the game are shown. In addition, the efficiency of each algorithm and its sub-cases are presented. This research concludes by arguing that Monte Carlo Tree Search was more efficient in higher score than Expectimax algorithm, although in a longer time. Increments in level of depth-search in Expectimax and number of moves in MCTS do not necessarily resulted in obtaining higher score.En el presente trabajo, dos algoritmos de búsqueda: Expectimax y Monte Carlo fueron desarrollados a fin de resolver el conocido juego en línea “2048" y comparar sus resultados. En ambos casos, cinco heurísticas fueron empleadas para obtener posiciones favorables de las fichas dentro del juego. Estas heurísticas fueron combinadas convenientemente para maximizar el puntaje del juego en todas las posibles posiciones. Como resultado el puntaje, el máximo valor de ficha, y el tiempo de cómputo empleado en el juego son mostrados. Además, la eficiencia de cada algoritmo y sus subcasos son presentados. El presente trabajo concluye que el algoritmo de búsqueda Monte-Carlo fue más eficiente en obtener un mayor puntaje que el algoritmo de Expectimax, aunque en un tiempo de cómputo mayor. Incrementos en el nivel de búsqueda en el algoritmo Expectimax y el número de movimientos en el algoritmo de Monte Carlo no necesariamente resultaron en un mayor puntaje del juego.Universidad Nacional Mayor de San Marcos, Facultad de Ciencias Matemáticas2018-09-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://revistasinvestigacion.unmsm.edu.pe/index.php/matema/article/view/1506910.15381/pes.v21i1.15069Pesquimat; Vol. 21 No. 1 (2018); 1-10Pesquimat; Vol. 21 Núm. 1 (2018); 1-101609-84391560-912Xreponame:Revistas - Universidad Nacional Mayor de San Marcosinstname:Universidad Nacional Mayor de San Marcosinstacron:UNMSMspahttps://revistasinvestigacion.unmsm.edu.pe/index.php/matema/article/view/15069/13063Derechos de autor 2018 Efrain Noa Yarasca, khoi Nguyenhttps://creativecommons.org/licenses/by-nc-sa/4.0info:eu-repo/semantics/openAccessoai:ojs.csi.unmsm:article/150692018-09-12T09:39:54Z
dc.title.none.fl_str_mv Comparison of Expectimax and Monte Carlo algorithms in Solving the online 2048 game
Comparación de los algoritmos Expectimax y Monte Carlo en la solución del juego en línea 2048
title Comparison of Expectimax and Monte Carlo algorithms in Solving the online 2048 game
spellingShingle Comparison of Expectimax and Monte Carlo algorithms in Solving the online 2048 game
Noa Yarasca, Efrain
2048 game
Expectimax algorithm
Monte Carlo algorithm
heuristics
Juego 2048
Algoritmo Expectimax
Monte Carlo
heuristicas
title_short Comparison of Expectimax and Monte Carlo algorithms in Solving the online 2048 game
title_full Comparison of Expectimax and Monte Carlo algorithms in Solving the online 2048 game
title_fullStr Comparison of Expectimax and Monte Carlo algorithms in Solving the online 2048 game
title_full_unstemmed Comparison of Expectimax and Monte Carlo algorithms in Solving the online 2048 game
title_sort Comparison of Expectimax and Monte Carlo algorithms in Solving the online 2048 game
dc.creator.none.fl_str_mv Noa Yarasca, Efrain
Nguyen, khoi
author Noa Yarasca, Efrain
author_facet Noa Yarasca, Efrain
Nguyen, khoi
author_role author
author2 Nguyen, khoi
author2_role author
dc.subject.none.fl_str_mv 2048 game
Expectimax algorithm
Monte Carlo algorithm
heuristics
Juego 2048
Algoritmo Expectimax
Monte Carlo
heuristicas
topic 2048 game
Expectimax algorithm
Monte Carlo algorithm
heuristics
Juego 2048
Algoritmo Expectimax
Monte Carlo
heuristicas
description In this work, two search algorithms Expectimax and Monte Carlo Tree Search (MCTS) were developed to solve the well-known “2048" puzzle online-game and compare their results. In both cases, five heuristics were employed to obtain favorable tile positions within the game. These heuristics were combined to maximize the game-score in all possible board positions. As a result, the game-score, the maximum value of tile obtained, and the computing time employed in solving the game are shown. In addition, the efficiency of each algorithm and its sub-cases are presented. This research concludes by arguing that Monte Carlo Tree Search was more efficient in higher score than Expectimax algorithm, although in a longer time. Increments in level of depth-search in Expectimax and number of moves in MCTS do not necessarily resulted in obtaining higher score.
publishDate 2018
dc.date.none.fl_str_mv 2018-09-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv https://revistasinvestigacion.unmsm.edu.pe/index.php/matema/article/view/15069
10.15381/pes.v21i1.15069
url https://revistasinvestigacion.unmsm.edu.pe/index.php/matema/article/view/15069
identifier_str_mv 10.15381/pes.v21i1.15069
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv https://revistasinvestigacion.unmsm.edu.pe/index.php/matema/article/view/15069/13063
dc.rights.none.fl_str_mv Derechos de autor 2018 Efrain Noa Yarasca, khoi Nguyen
https://creativecommons.org/licenses/by-nc-sa/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Derechos de autor 2018 Efrain Noa Yarasca, khoi Nguyen
https://creativecommons.org/licenses/by-nc-sa/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad Nacional Mayor de San Marcos, Facultad de Ciencias Matemáticas
publisher.none.fl_str_mv Universidad Nacional Mayor de San Marcos, Facultad de Ciencias Matemáticas
dc.source.none.fl_str_mv Pesquimat; Vol. 21 No. 1 (2018); 1-10
Pesquimat; Vol. 21 Núm. 1 (2018); 1-10
1609-8439
1560-912X
reponame:Revistas - Universidad Nacional Mayor de San Marcos
instname:Universidad Nacional Mayor de San Marcos
instacron:UNMSM
instname_str Universidad Nacional Mayor de San Marcos
instacron_str UNMSM
institution UNMSM
reponame_str Revistas - Universidad Nacional Mayor de San Marcos
collection Revistas - Universidad Nacional Mayor de San Marcos
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1795238281054519296
score 13.960013
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).