SET-THEORETIC COMPLETE INTERSECTIONS ON BINOMIALS, THE SIMPLICIAL TORIC CASE
Descripción del Articulo
Let V be a simplicial toric variety of codimension r over a field of any characteristic. We completely characterize the implicial toric varieties that are set-theoretic complete intersections on binomials. In particular we prove that: 1. In characteristic zero, V is a set-theoretic complete intersec...
Autores: | , , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2000 |
Institución: | Universidad Nacional Mayor de San Marcos |
Repositorio: | Revistas - Universidad Nacional Mayor de San Marcos |
Lenguaje: | español |
OAI Identifier: | oai:ojs.csi.unmsm:article/9245 |
Enlace del recurso: | https://revistasinvestigacion.unmsm.edu.pe/index.php/matema/article/view/9245 |
Nivel de acceso: | acceso abierto |
id |
REVUNMSM_f1cb0ae6873b677d99e4395a656b9060 |
---|---|
oai_identifier_str |
oai:ojs.csi.unmsm:article/9245 |
network_acronym_str |
REVUNMSM |
network_name_str |
Revistas - Universidad Nacional Mayor de San Marcos |
repository_id_str |
|
spelling |
SET-THEORETIC COMPLETE INTERSECTIONS ON BINOMIALS, THE SIMPLICIAL TORIC CASEBarile, MargheritaMorales, MarcelThoma, ApostolosLet V be a simplicial toric variety of codimension r over a field of any characteristic. We completely characterize the implicial toric varieties that are set-theoretic complete intersections on binomials. In particular we prove that: 1. In characteristic zero, V is a set-theoretic complete intersection on binomials if and only jf V is a. complete intersection. Moreover, if F1,…,Fr; are binomials such that I(V)= rad( F1, . .. ,Fr), th en I(V) = (F1, ... ,Fr). We also get a geometric proof of some of the results in [9] characterizing complete intersections by gluing; semigroups. 2. In positive characteristic p, V is a set-theoretic complete intersection on binomials if and only if V is complete 1y p-glued. These results improve and complete all known results on these topics.Universidad Nacional Mayor de San Marcos, Facultad de Ciencias Matemáticas2000-12-29info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://revistasinvestigacion.unmsm.edu.pe/index.php/matema/article/view/924510.15381/pes.v3i2.9245Pesquimat; Vol. 3 No. 2 (2000)Pesquimat; Vol. 3 Núm. 2 (2000)1609-84391560-912X10.15381/pes.v3i2reponame:Revistas - Universidad Nacional Mayor de San Marcosinstname:Universidad Nacional Mayor de San Marcosinstacron:UNMSMspahttps://revistasinvestigacion.unmsm.edu.pe/index.php/matema/article/view/9245/8068Derechos de autor 2000 Margherita Barile, Marcel Morales, Apostolos Thomahttps://creativecommons.org/licenses/by-nc-sa/4.0info:eu-repo/semantics/openAccessoai:ojs.csi.unmsm:article/92452020-03-06T20:46:31Z |
dc.title.none.fl_str_mv |
SET-THEORETIC COMPLETE INTERSECTIONS ON BINOMIALS, THE SIMPLICIAL TORIC CASE |
title |
SET-THEORETIC COMPLETE INTERSECTIONS ON BINOMIALS, THE SIMPLICIAL TORIC CASE |
spellingShingle |
SET-THEORETIC COMPLETE INTERSECTIONS ON BINOMIALS, THE SIMPLICIAL TORIC CASE Barile, Margherita |
title_short |
SET-THEORETIC COMPLETE INTERSECTIONS ON BINOMIALS, THE SIMPLICIAL TORIC CASE |
title_full |
SET-THEORETIC COMPLETE INTERSECTIONS ON BINOMIALS, THE SIMPLICIAL TORIC CASE |
title_fullStr |
SET-THEORETIC COMPLETE INTERSECTIONS ON BINOMIALS, THE SIMPLICIAL TORIC CASE |
title_full_unstemmed |
SET-THEORETIC COMPLETE INTERSECTIONS ON BINOMIALS, THE SIMPLICIAL TORIC CASE |
title_sort |
SET-THEORETIC COMPLETE INTERSECTIONS ON BINOMIALS, THE SIMPLICIAL TORIC CASE |
dc.creator.none.fl_str_mv |
Barile, Margherita Morales, Marcel Thoma, Apostolos |
author |
Barile, Margherita |
author_facet |
Barile, Margherita Morales, Marcel Thoma, Apostolos |
author_role |
author |
author2 |
Morales, Marcel Thoma, Apostolos |
author2_role |
author author |
description |
Let V be a simplicial toric variety of codimension r over a field of any characteristic. We completely characterize the implicial toric varieties that are set-theoretic complete intersections on binomials. In particular we prove that: 1. In characteristic zero, V is a set-theoretic complete intersection on binomials if and only jf V is a. complete intersection. Moreover, if F1,…,Fr; are binomials such that I(V)= rad( F1, . .. ,Fr), th en I(V) = (F1, ... ,Fr). We also get a geometric proof of some of the results in [9] characterizing complete intersections by gluing; semigroups. 2. In positive characteristic p, V is a set-theoretic complete intersection on binomials if and only if V is complete 1y p-glued. These results improve and complete all known results on these topics. |
publishDate |
2000 |
dc.date.none.fl_str_mv |
2000-12-29 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
https://revistasinvestigacion.unmsm.edu.pe/index.php/matema/article/view/9245 10.15381/pes.v3i2.9245 |
url |
https://revistasinvestigacion.unmsm.edu.pe/index.php/matema/article/view/9245 |
identifier_str_mv |
10.15381/pes.v3i2.9245 |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.relation.none.fl_str_mv |
https://revistasinvestigacion.unmsm.edu.pe/index.php/matema/article/view/9245/8068 |
dc.rights.none.fl_str_mv |
Derechos de autor 2000 Margherita Barile, Marcel Morales, Apostolos Thoma https://creativecommons.org/licenses/by-nc-sa/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Derechos de autor 2000 Margherita Barile, Marcel Morales, Apostolos Thoma https://creativecommons.org/licenses/by-nc-sa/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidad Nacional Mayor de San Marcos, Facultad de Ciencias Matemáticas |
publisher.none.fl_str_mv |
Universidad Nacional Mayor de San Marcos, Facultad de Ciencias Matemáticas |
dc.source.none.fl_str_mv |
Pesquimat; Vol. 3 No. 2 (2000) Pesquimat; Vol. 3 Núm. 2 (2000) 1609-8439 1560-912X 10.15381/pes.v3i2 reponame:Revistas - Universidad Nacional Mayor de San Marcos instname:Universidad Nacional Mayor de San Marcos instacron:UNMSM |
instname_str |
Universidad Nacional Mayor de San Marcos |
instacron_str |
UNMSM |
institution |
UNMSM |
reponame_str |
Revistas - Universidad Nacional Mayor de San Marcos |
collection |
Revistas - Universidad Nacional Mayor de San Marcos |
repository.name.fl_str_mv |
|
repository.mail.fl_str_mv |
|
_version_ |
1795238279556104192 |
score |
13.7802305 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).