SET-THEORETIC COMPLETE INTERSECTIONS ON BINOMIALS, THE SIMPLICIAL TORIC CASE

Descripción del Articulo

Let V be a simplicial toric variety of codimension r over a field of any characteristic. We completely characterize the implicial toric varieties that are set-theoretic complete intersections on binomials. In particular we prove that: 1. In characteristic zero, V is a set-theoretic complete intersec...

Descripción completa

Detalles Bibliográficos
Autores: Barile, Margherita, Morales, Marcel, Thoma, Apostolos
Formato: artículo
Fecha de Publicación:2000
Institución:Universidad Nacional Mayor de San Marcos
Repositorio:Revistas - Universidad Nacional Mayor de San Marcos
Lenguaje:español
OAI Identifier:oai:ojs.csi.unmsm:article/9245
Enlace del recurso:https://revistasinvestigacion.unmsm.edu.pe/index.php/matema/article/view/9245
Nivel de acceso:acceso abierto
id REVUNMSM_f1cb0ae6873b677d99e4395a656b9060
oai_identifier_str oai:ojs.csi.unmsm:article/9245
network_acronym_str REVUNMSM
network_name_str Revistas - Universidad Nacional Mayor de San Marcos
repository_id_str
spelling SET-THEORETIC COMPLETE INTERSECTIONS ON BINOMIALS, THE SIMPLICIAL TORIC CASEBarile, MargheritaMorales, MarcelThoma, ApostolosLet V be a simplicial toric variety of codimension r over a field of any characteristic. We completely characterize the implicial toric varieties that are set-theoretic complete intersections on binomials. In particular we prove that: 1. In characteristic zero, V is a set-theoretic complete intersection on binomials if and only jf V is a. complete intersection.  Moreover, if F1,…,Fr; are binomials such that I(V)= rad( F1, . .. ,Fr), th en I(V) = (F1, ... ,Fr). We also get a geometric proof of some of the results in [9] characterizing complete intersections by gluing; semigroups. 2. In positive characteristic p, V is a set-theoretic complete intersection on binomials if and only if V is complete 1y p-glued. These results improve and complete all known results on these topics.Universidad Nacional Mayor de San Marcos, Facultad de Ciencias Matemáticas2000-12-29info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://revistasinvestigacion.unmsm.edu.pe/index.php/matema/article/view/924510.15381/pes.v3i2.9245Pesquimat; Vol. 3 No. 2 (2000)Pesquimat; Vol. 3 Núm. 2 (2000)1609-84391560-912X10.15381/pes.v3i2reponame:Revistas - Universidad Nacional Mayor de San Marcosinstname:Universidad Nacional Mayor de San Marcosinstacron:UNMSMspahttps://revistasinvestigacion.unmsm.edu.pe/index.php/matema/article/view/9245/8068Derechos de autor 2000 Margherita Barile, Marcel Morales, Apostolos Thomahttps://creativecommons.org/licenses/by-nc-sa/4.0info:eu-repo/semantics/openAccessoai:ojs.csi.unmsm:article/92452020-03-06T20:46:31Z
dc.title.none.fl_str_mv SET-THEORETIC COMPLETE INTERSECTIONS ON BINOMIALS, THE SIMPLICIAL TORIC CASE
title SET-THEORETIC COMPLETE INTERSECTIONS ON BINOMIALS, THE SIMPLICIAL TORIC CASE
spellingShingle SET-THEORETIC COMPLETE INTERSECTIONS ON BINOMIALS, THE SIMPLICIAL TORIC CASE
Barile, Margherita
title_short SET-THEORETIC COMPLETE INTERSECTIONS ON BINOMIALS, THE SIMPLICIAL TORIC CASE
title_full SET-THEORETIC COMPLETE INTERSECTIONS ON BINOMIALS, THE SIMPLICIAL TORIC CASE
title_fullStr SET-THEORETIC COMPLETE INTERSECTIONS ON BINOMIALS, THE SIMPLICIAL TORIC CASE
title_full_unstemmed SET-THEORETIC COMPLETE INTERSECTIONS ON BINOMIALS, THE SIMPLICIAL TORIC CASE
title_sort SET-THEORETIC COMPLETE INTERSECTIONS ON BINOMIALS, THE SIMPLICIAL TORIC CASE
dc.creator.none.fl_str_mv Barile, Margherita
Morales, Marcel
Thoma, Apostolos
author Barile, Margherita
author_facet Barile, Margherita
Morales, Marcel
Thoma, Apostolos
author_role author
author2 Morales, Marcel
Thoma, Apostolos
author2_role author
author
description Let V be a simplicial toric variety of codimension r over a field of any characteristic. We completely characterize the implicial toric varieties that are set-theoretic complete intersections on binomials. In particular we prove that: 1. In characteristic zero, V is a set-theoretic complete intersection on binomials if and only jf V is a. complete intersection.  Moreover, if F1,…,Fr; are binomials such that I(V)= rad( F1, . .. ,Fr), th en I(V) = (F1, ... ,Fr). We also get a geometric proof of some of the results in [9] characterizing complete intersections by gluing; semigroups. 2. In positive characteristic p, V is a set-theoretic complete intersection on binomials if and only if V is complete 1y p-glued. These results improve and complete all known results on these topics.
publishDate 2000
dc.date.none.fl_str_mv 2000-12-29
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv https://revistasinvestigacion.unmsm.edu.pe/index.php/matema/article/view/9245
10.15381/pes.v3i2.9245
url https://revistasinvestigacion.unmsm.edu.pe/index.php/matema/article/view/9245
identifier_str_mv 10.15381/pes.v3i2.9245
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv https://revistasinvestigacion.unmsm.edu.pe/index.php/matema/article/view/9245/8068
dc.rights.none.fl_str_mv Derechos de autor 2000 Margherita Barile, Marcel Morales, Apostolos Thoma
https://creativecommons.org/licenses/by-nc-sa/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Derechos de autor 2000 Margherita Barile, Marcel Morales, Apostolos Thoma
https://creativecommons.org/licenses/by-nc-sa/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad Nacional Mayor de San Marcos, Facultad de Ciencias Matemáticas
publisher.none.fl_str_mv Universidad Nacional Mayor de San Marcos, Facultad de Ciencias Matemáticas
dc.source.none.fl_str_mv Pesquimat; Vol. 3 No. 2 (2000)
Pesquimat; Vol. 3 Núm. 2 (2000)
1609-8439
1560-912X
10.15381/pes.v3i2
reponame:Revistas - Universidad Nacional Mayor de San Marcos
instname:Universidad Nacional Mayor de San Marcos
instacron:UNMSM
instname_str Universidad Nacional Mayor de San Marcos
instacron_str UNMSM
institution UNMSM
reponame_str Revistas - Universidad Nacional Mayor de San Marcos
collection Revistas - Universidad Nacional Mayor de San Marcos
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1795238279556104192
score 13.7802305
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).