SET-THEORETIC COMPLETE INTERSECTIONS ON BINOMIALS, THE SIMPLICIAL TORIC CASE

Descripción del Articulo

Let V be a simplicial toric variety of codimension r over a field of any characteristic. We completely characterize the implicial toric varieties that are set-theoretic complete intersections on binomials. In particular we prove that: 1. In characteristic zero, V is a set-theoretic complete intersec...

Descripción completa

Detalles Bibliográficos
Autores: Barile, Margherita, Morales, Marcel, Thoma, Apostolos
Formato: artículo
Fecha de Publicación:2000
Institución:Universidad Nacional Mayor de San Marcos
Repositorio:Revistas - Universidad Nacional Mayor de San Marcos
Lenguaje:español
OAI Identifier:oai:ojs.csi.unmsm:article/9245
Enlace del recurso:https://revistasinvestigacion.unmsm.edu.pe/index.php/matema/article/view/9245
Nivel de acceso:acceso abierto
Descripción
Sumario:Let V be a simplicial toric variety of codimension r over a field of any characteristic. We completely characterize the implicial toric varieties that are set-theoretic complete intersections on binomials. In particular we prove that: 1. In characteristic zero, V is a set-theoretic complete intersection on binomials if and only jf V is a. complete intersection.  Moreover, if F1,…,Fr; are binomials such that I(V)= rad( F1, . .. ,Fr), th en I(V) = (F1, ... ,Fr). We also get a geometric proof of some of the results in [9] characterizing complete intersections by gluing; semigroups. 2. In positive characteristic p, V is a set-theoretic complete intersection on binomials if and only if V is complete 1y p-glued. These results improve and complete all known results on these topics.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).