Dynamic spatio-temporal of the aerial biomass in high Andean grasslands based on NDVI-MODIS validated by spectrometry in situ
Descripción del Articulo
Moderate resolution imagery (MODIS) data from the Normalized Difference Vegetation Index (NDVI) can be used to estimate aboveground biomass at large spatial scales; however, validation of the information with fieldwork is required to make more accurate grassland vegetation predictions. The study was...
Autores: | , , , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2021 |
Institución: | Universidad Nacional Mayor de San Marcos |
Repositorio: | Revistas - Universidad Nacional Mayor de San Marcos |
Lenguaje: | español |
OAI Identifier: | oai:ojs.csi.unmsm:article/20392 |
Enlace del recurso: | https://revistasinvestigacion.unmsm.edu.pe/index.php/veterinaria/article/view/20392 |
Nivel de acceso: | acceso abierto |
Materia: | vegetation index high grassland low grassland satellite images índice de vegetación pajonal alto pajonal bajo imágenes satelitales |
id |
REVUNMSM_f048a9487a11998443e73d64cfbe3cfd |
---|---|
oai_identifier_str |
oai:ojs.csi.unmsm:article/20392 |
network_acronym_str |
REVUNMSM |
network_name_str |
Revistas - Universidad Nacional Mayor de San Marcos |
repository_id_str |
|
dc.title.none.fl_str_mv |
Dynamic spatio-temporal of the aerial biomass in high Andean grasslands based on NDVI-MODIS validated by spectrometry in situ Dinámica espacio temporal de la biomasa aérea en pastizales altoandinos basado en NDVI-MODIS validado por espectrometría in situ |
title |
Dynamic spatio-temporal of the aerial biomass in high Andean grasslands based on NDVI-MODIS validated by spectrometry in situ |
spellingShingle |
Dynamic spatio-temporal of the aerial biomass in high Andean grasslands based on NDVI-MODIS validated by spectrometry in situ Nuñez Delgado, Jimny vegetation index high grassland low grassland satellite images índice de vegetación pajonal alto pajonal bajo imágenes satelitales |
title_short |
Dynamic spatio-temporal of the aerial biomass in high Andean grasslands based on NDVI-MODIS validated by spectrometry in situ |
title_full |
Dynamic spatio-temporal of the aerial biomass in high Andean grasslands based on NDVI-MODIS validated by spectrometry in situ |
title_fullStr |
Dynamic spatio-temporal of the aerial biomass in high Andean grasslands based on NDVI-MODIS validated by spectrometry in situ |
title_full_unstemmed |
Dynamic spatio-temporal of the aerial biomass in high Andean grasslands based on NDVI-MODIS validated by spectrometry in situ |
title_sort |
Dynamic spatio-temporal of the aerial biomass in high Andean grasslands based on NDVI-MODIS validated by spectrometry in situ |
dc.creator.none.fl_str_mv |
Nuñez Delgado, Jimny Pizarro Carcausto, Samuel Gutiérrez Tang, Marco Ñaupari Vásquez, Javier Nuñez Delgado, Jimny Pizarro Carcausto, Samuel Gutiérrez Tang, Marco Ñaupari Vásquez, Javier |
author |
Nuñez Delgado, Jimny |
author_facet |
Nuñez Delgado, Jimny Pizarro Carcausto, Samuel Gutiérrez Tang, Marco Ñaupari Vásquez, Javier |
author_role |
author |
author2 |
Pizarro Carcausto, Samuel Gutiérrez Tang, Marco Ñaupari Vásquez, Javier |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
vegetation index high grassland low grassland satellite images índice de vegetación pajonal alto pajonal bajo imágenes satelitales |
topic |
vegetation index high grassland low grassland satellite images índice de vegetación pajonal alto pajonal bajo imágenes satelitales |
description |
Moderate resolution imagery (MODIS) data from the Normalized Difference Vegetation Index (NDVI) can be used to estimate aboveground biomass at large spatial scales; however, validation of the information with fieldwork is required to make more accurate grassland vegetation predictions. The study was conducted in three districts of the central highlands of Peru. In total, 153 grass samples (high grassland and low grassland) were collected after reading NDVI in situ within a pixel of 250x250 m, with a frequency of three months during a three year period. Satellite images were downloaded from the MODIS sensor to obtain the NDVI. The NDVI-MODIS values were calibrated with the NDVI registered in situ, using regression models. The calibrated equations modelled the dynamic trends of vegetation between 2000 and 2018 for the central highlands. The NDVI in situ of the low grassland ranged between 0.36 ± 0.13 and 0.24 ± 0.05 in the wet and dry seasons, respectively, while the high grassland ranged between 0.42 ± 0.14 and 0.26 ± 0.10 in the wet and dry seasons, respectively. The NDVI of the MODIS sensor for the low grassland ranged between 0.41 ± 0.14 and 0.27 ± 0.06 in the wet and dry seasons, respectively, and for the high grassland between 0.44 ± 0.14 and 0.41 ± 0.10 in the wet and dry seasons, respectively. The quadratic model obtained better estimators both for the NDVI calibration (RMSE: 0.06 and R2: 0.91) and for the biomass prediction (RMSE: 1300 and R2: 0.61). It is concluded that it is possible to use satellite information to evaluate the high Andean grasslands. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-06-23 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
https://revistasinvestigacion.unmsm.edu.pe/index.php/veterinaria/article/view/20392 10.15381/rivep.v32i3.20392 |
url |
https://revistasinvestigacion.unmsm.edu.pe/index.php/veterinaria/article/view/20392 |
identifier_str_mv |
10.15381/rivep.v32i3.20392 |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.relation.none.fl_str_mv |
https://revistasinvestigacion.unmsm.edu.pe/index.php/veterinaria/article/view/20392/16801 |
dc.rights.none.fl_str_mv |
http://creativecommons.org/licenses/by/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidad Nacional Mayor de San Marcos, Facultad de Medicina Veterinaria |
publisher.none.fl_str_mv |
Universidad Nacional Mayor de San Marcos, Facultad de Medicina Veterinaria |
dc.source.none.fl_str_mv |
Revista de Investigaciones Veterinarias del Perú; Vol. 32 Núm. 3 (2021); e20392 Revista de Investigaciones Veterinarias del Perú; Vol. 32 No. 3 (2021); e20392 1682-3419 1609-9117 reponame:Revistas - Universidad Nacional Mayor de San Marcos instname:Universidad Nacional Mayor de San Marcos instacron:UNMSM |
instname_str |
Universidad Nacional Mayor de San Marcos |
instacron_str |
UNMSM |
institution |
UNMSM |
reponame_str |
Revistas - Universidad Nacional Mayor de San Marcos |
collection |
Revistas - Universidad Nacional Mayor de San Marcos |
repository.name.fl_str_mv |
|
repository.mail.fl_str_mv |
|
_version_ |
1795238235355480064 |
spelling |
Dynamic spatio-temporal of the aerial biomass in high Andean grasslands based on NDVI-MODIS validated by spectrometry in situDinámica espacio temporal de la biomasa aérea en pastizales altoandinos basado en NDVI-MODIS validado por espectrometría in situNuñez Delgado, JimnyPizarro Carcausto, SamuelGutiérrez Tang, MarcoÑaupari Vásquez, JavierNuñez Delgado, JimnyPizarro Carcausto, SamuelGutiérrez Tang, MarcoÑaupari Vásquez, Javiervegetation indexhigh grasslandlow grasslandsatellite imagesíndice de vegetaciónpajonal altopajonal bajoimágenes satelitalesModerate resolution imagery (MODIS) data from the Normalized Difference Vegetation Index (NDVI) can be used to estimate aboveground biomass at large spatial scales; however, validation of the information with fieldwork is required to make more accurate grassland vegetation predictions. The study was conducted in three districts of the central highlands of Peru. In total, 153 grass samples (high grassland and low grassland) were collected after reading NDVI in situ within a pixel of 250x250 m, with a frequency of three months during a three year period. Satellite images were downloaded from the MODIS sensor to obtain the NDVI. The NDVI-MODIS values were calibrated with the NDVI registered in situ, using regression models. The calibrated equations modelled the dynamic trends of vegetation between 2000 and 2018 for the central highlands. The NDVI in situ of the low grassland ranged between 0.36 ± 0.13 and 0.24 ± 0.05 in the wet and dry seasons, respectively, while the high grassland ranged between 0.42 ± 0.14 and 0.26 ± 0.10 in the wet and dry seasons, respectively. The NDVI of the MODIS sensor for the low grassland ranged between 0.41 ± 0.14 and 0.27 ± 0.06 in the wet and dry seasons, respectively, and for the high grassland between 0.44 ± 0.14 and 0.41 ± 0.10 in the wet and dry seasons, respectively. The quadratic model obtained better estimators both for the NDVI calibration (RMSE: 0.06 and R2: 0.91) and for the biomass prediction (RMSE: 1300 and R2: 0.61). It is concluded that it is possible to use satellite information to evaluate the high Andean grasslands.Es posible utilizar datos del Índice de Vegetación de Diferencia Normalizada (NDVI) de imágenes de resolución moderada (MODIS) para estimar la biomasa aérea a grandes escalas espaciales; sin embargo, se requiere validar la información con trabajo in situ para hacer predicciones de la vegetación de pastizales más acertadas. El estudio se realizó en tres distritos de la sierra central del Perú. Se colectaron 153 muestras de pasto (pajonal alto y pajonal bajo) previa lectura de NDVI in situ dentro de un pixel de 250x250 m, con una frecuencia de tres meses en tres años de evaluaciones. Se descargaron imágenes satelitales del sensor MODIS para obtener el NDVI. Los valores de NDVI-MODIS fueron calibrados con el NDVI registrado in situ, mediante modelos de regresión. Las ecuaciones calibradas modelaron las tendencias dinámicas de la vegetación entre 2000 y 2018 para la sierra central. El NDVI in situ del pajonal bajo osciló entre 0.36 ±0.13 y 0.24±0.05 en las épocas húmeda y seca, respectivamente, mientras que el pajonal alto osciló entre 0.42±0.14 y 0.26±0.10 en las épocas húmeda y seca, respectivamente. El NDVI del sensor MODIS del pajonal bajo osciló entre 0.41±0.14 y 0.27±0.06 en las épocas húmeda y seca, respectivamente, y para el pajonal alto entre 0.44±0.14 y 0.41 ±0.10 en épocas húmeda y seca, respectivamente. El modelo cuadrático obtuvo mejores estimadores tanto para la calibración del NDVI (RMSE: 0.06 y R2: 0.91), como para la predicción de la biomasa (RMSE: 1300 y R2: 0.61). Se concluye que es posible utilizar información satelital para evaluar los pastizales altoandinos.Universidad Nacional Mayor de San Marcos, Facultad de Medicina Veterinaria2021-06-23info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://revistasinvestigacion.unmsm.edu.pe/index.php/veterinaria/article/view/2039210.15381/rivep.v32i3.20392Revista de Investigaciones Veterinarias del Perú; Vol. 32 Núm. 3 (2021); e20392Revista de Investigaciones Veterinarias del Perú; Vol. 32 No. 3 (2021); e203921682-34191609-9117reponame:Revistas - Universidad Nacional Mayor de San Marcosinstname:Universidad Nacional Mayor de San Marcosinstacron:UNMSMspahttps://revistasinvestigacion.unmsm.edu.pe/index.php/veterinaria/article/view/20392/16801Derechos de autor 2021 Jimny Nuñez Delgado, Samuel Pizarro Carcausto, Marco Gutiérrez Tang, Javier Ñaupari Vásquezhttp://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessoai:ojs.csi.unmsm:article/203922021-06-30T16:38:53Z |
score |
13.906606 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).