Dynamic spatio-temporal of the aerial biomass in high Andean grasslands based on NDVI-MODIS validated by spectrometry in situ

Descripción del Articulo

Moderate resolution imagery (MODIS) data from the Normalized Difference Vegetation Index (NDVI) can be used to estimate aboveground biomass at large spatial scales; however, validation of the information with fieldwork is required to make more accurate grassland vegetation predictions. The study was...

Descripción completa

Detalles Bibliográficos
Autores: Nuñez Delgado, Jimny, Pizarro Carcausto, Samuel, Gutiérrez Tang, Marco, Ñaupari Vásquez, Javier
Formato: artículo
Fecha de Publicación:2021
Institución:Universidad Nacional Mayor de San Marcos
Repositorio:Revistas - Universidad Nacional Mayor de San Marcos
Lenguaje:español
OAI Identifier:oai:ojs.csi.unmsm:article/20392
Enlace del recurso:https://revistasinvestigacion.unmsm.edu.pe/index.php/veterinaria/article/view/20392
Nivel de acceso:acceso abierto
Materia:vegetation index
high grassland
low grassland
satellite images
índice de vegetación
pajonal alto
pajonal bajo
imágenes satelitales
id REVUNMSM_f048a9487a11998443e73d64cfbe3cfd
oai_identifier_str oai:ojs.csi.unmsm:article/20392
network_acronym_str REVUNMSM
network_name_str Revistas - Universidad Nacional Mayor de San Marcos
repository_id_str
dc.title.none.fl_str_mv Dynamic spatio-temporal of the aerial biomass in high Andean grasslands based on NDVI-MODIS validated by spectrometry in situ
Dinámica espacio temporal de la biomasa aérea en pastizales altoandinos basado en NDVI-MODIS validado por espectrometría in situ
title Dynamic spatio-temporal of the aerial biomass in high Andean grasslands based on NDVI-MODIS validated by spectrometry in situ
spellingShingle Dynamic spatio-temporal of the aerial biomass in high Andean grasslands based on NDVI-MODIS validated by spectrometry in situ
Nuñez Delgado, Jimny
vegetation index
high grassland
low grassland
satellite images
índice de vegetación
pajonal alto
pajonal bajo
imágenes satelitales
title_short Dynamic spatio-temporal of the aerial biomass in high Andean grasslands based on NDVI-MODIS validated by spectrometry in situ
title_full Dynamic spatio-temporal of the aerial biomass in high Andean grasslands based on NDVI-MODIS validated by spectrometry in situ
title_fullStr Dynamic spatio-temporal of the aerial biomass in high Andean grasslands based on NDVI-MODIS validated by spectrometry in situ
title_full_unstemmed Dynamic spatio-temporal of the aerial biomass in high Andean grasslands based on NDVI-MODIS validated by spectrometry in situ
title_sort Dynamic spatio-temporal of the aerial biomass in high Andean grasslands based on NDVI-MODIS validated by spectrometry in situ
dc.creator.none.fl_str_mv Nuñez Delgado, Jimny
Pizarro Carcausto, Samuel
Gutiérrez Tang, Marco
Ñaupari Vásquez, Javier
Nuñez Delgado, Jimny
Pizarro Carcausto, Samuel
Gutiérrez Tang, Marco
Ñaupari Vásquez, Javier
author Nuñez Delgado, Jimny
author_facet Nuñez Delgado, Jimny
Pizarro Carcausto, Samuel
Gutiérrez Tang, Marco
Ñaupari Vásquez, Javier
author_role author
author2 Pizarro Carcausto, Samuel
Gutiérrez Tang, Marco
Ñaupari Vásquez, Javier
author2_role author
author
author
dc.subject.none.fl_str_mv vegetation index
high grassland
low grassland
satellite images
índice de vegetación
pajonal alto
pajonal bajo
imágenes satelitales
topic vegetation index
high grassland
low grassland
satellite images
índice de vegetación
pajonal alto
pajonal bajo
imágenes satelitales
description Moderate resolution imagery (MODIS) data from the Normalized Difference Vegetation Index (NDVI) can be used to estimate aboveground biomass at large spatial scales; however, validation of the information with fieldwork is required to make more accurate grassland vegetation predictions. The study was conducted in three districts of the central highlands of Peru. In total, 153 grass samples (high grassland and low grassland) were collected after reading NDVI in situ within a pixel of 250x250 m, with a frequency of three months during a three year period. Satellite images were downloaded from the MODIS sensor to obtain the NDVI. The NDVI-MODIS values were calibrated with the NDVI registered in situ, using regression models. The calibrated equations modelled the dynamic trends of vegetation between 2000 and 2018 for the central highlands. The NDVI in situ of the low grassland ranged between 0.36 ± 0.13 and 0.24 ± 0.05 in the wet and dry seasons, respectively, while the high grassland ranged between 0.42 ± 0.14 and 0.26 ± 0.10 in the wet and dry seasons, respectively. The NDVI of the MODIS sensor for the low grassland ranged between 0.41 ± 0.14 and 0.27 ± 0.06 in the wet and dry seasons, respectively, and for the high grassland between 0.44 ± 0.14 and 0.41 ± 0.10 in the wet and dry seasons, respectively. The quadratic model obtained better estimators both for the NDVI calibration (RMSE: 0.06 and R2: 0.91) and for the biomass prediction (RMSE: 1300 and R2: 0.61). It is concluded that it is possible to use satellite information to evaluate the high Andean grasslands.
publishDate 2021
dc.date.none.fl_str_mv 2021-06-23
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv https://revistasinvestigacion.unmsm.edu.pe/index.php/veterinaria/article/view/20392
10.15381/rivep.v32i3.20392
url https://revistasinvestigacion.unmsm.edu.pe/index.php/veterinaria/article/view/20392
identifier_str_mv 10.15381/rivep.v32i3.20392
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv https://revistasinvestigacion.unmsm.edu.pe/index.php/veterinaria/article/view/20392/16801
dc.rights.none.fl_str_mv http://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad Nacional Mayor de San Marcos, Facultad de Medicina Veterinaria
publisher.none.fl_str_mv Universidad Nacional Mayor de San Marcos, Facultad de Medicina Veterinaria
dc.source.none.fl_str_mv Revista de Investigaciones Veterinarias del Perú; Vol. 32 Núm. 3 (2021); e20392
Revista de Investigaciones Veterinarias del Perú; Vol. 32 No. 3 (2021); e20392
1682-3419
1609-9117
reponame:Revistas - Universidad Nacional Mayor de San Marcos
instname:Universidad Nacional Mayor de San Marcos
instacron:UNMSM
instname_str Universidad Nacional Mayor de San Marcos
instacron_str UNMSM
institution UNMSM
reponame_str Revistas - Universidad Nacional Mayor de San Marcos
collection Revistas - Universidad Nacional Mayor de San Marcos
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1795238235355480064
spelling Dynamic spatio-temporal of the aerial biomass in high Andean grasslands based on NDVI-MODIS validated by spectrometry in situDinámica espacio temporal de la biomasa aérea en pastizales altoandinos basado en NDVI-MODIS validado por espectrometría in situNuñez Delgado, JimnyPizarro Carcausto, SamuelGutiérrez Tang, MarcoÑaupari Vásquez, JavierNuñez Delgado, JimnyPizarro Carcausto, SamuelGutiérrez Tang, MarcoÑaupari Vásquez, Javiervegetation indexhigh grasslandlow grasslandsatellite imagesíndice de vegetaciónpajonal altopajonal bajoimágenes satelitalesModerate resolution imagery (MODIS) data from the Normalized Difference Vegetation Index (NDVI) can be used to estimate aboveground biomass at large spatial scales; however, validation of the information with fieldwork is required to make more accurate grassland vegetation predictions. The study was conducted in three districts of the central highlands of Peru. In total, 153 grass samples (high grassland and low grassland) were collected after reading NDVI in situ within a pixel of 250x250 m, with a frequency of three months during a three year period. Satellite images were downloaded from the MODIS sensor to obtain the NDVI. The NDVI-MODIS values were calibrated with the NDVI registered in situ, using regression models. The calibrated equations modelled the dynamic trends of vegetation between 2000 and 2018 for the central highlands. The NDVI in situ of the low grassland ranged between 0.36 ± 0.13 and 0.24 ± 0.05 in the wet and dry seasons, respectively, while the high grassland ranged between 0.42 ± 0.14 and 0.26 ± 0.10 in the wet and dry seasons, respectively. The NDVI of the MODIS sensor for the low grassland ranged between 0.41 ± 0.14 and 0.27 ± 0.06 in the wet and dry seasons, respectively, and for the high grassland between 0.44 ± 0.14 and 0.41 ± 0.10 in the wet and dry seasons, respectively. The quadratic model obtained better estimators both for the NDVI calibration (RMSE: 0.06 and R2: 0.91) and for the biomass prediction (RMSE: 1300 and R2: 0.61). It is concluded that it is possible to use satellite information to evaluate the high Andean grasslands.Es posible utilizar datos del Índice de Vegetación de Diferencia Normalizada (NDVI) de imágenes de resolución moderada (MODIS) para estimar la biomasa aérea a grandes escalas espaciales; sin embargo, se requiere validar la información con trabajo in situ para hacer predicciones de la vegetación de pastizales más acertadas. El estudio se realizó en tres distritos de la sierra central del Perú. Se colectaron 153 muestras de pasto (pajonal alto y pajonal bajo) previa lectura de NDVI in situ dentro de un pixel de 250x250 m, con una frecuencia de tres meses en tres años de evaluaciones. Se descargaron imágenes satelitales del sensor MODIS para obtener el NDVI. Los valores de NDVI-MODIS fueron calibrados con el NDVI registrado in situ, mediante modelos de regresión. Las ecuaciones calibradas modelaron las tendencias dinámicas de la vegetación entre 2000 y 2018 para la sierra central. El NDVI in situ del pajonal bajo osciló entre 0.36 ±0.13 y 0.24±0.05 en las épocas húmeda y seca, respectivamente, mientras que el pajonal alto osciló entre 0.42±0.14 y 0.26±0.10 en las épocas húmeda y seca, respectivamente. El NDVI del sensor MODIS del pajonal bajo osciló entre 0.41±0.14 y 0.27±0.06 en las épocas húmeda y seca, respectivamente, y para el pajonal alto entre 0.44±0.14 y 0.41 ±0.10 en épocas húmeda y seca, respectivamente. El modelo cuadrático obtuvo mejores estimadores tanto para la calibración del NDVI (RMSE: 0.06 y R2: 0.91), como para la predicción de la biomasa (RMSE: 1300 y R2: 0.61). Se concluye que es posible utilizar información satelital para evaluar los pastizales altoandinos.Universidad Nacional Mayor de San Marcos, Facultad de Medicina Veterinaria2021-06-23info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://revistasinvestigacion.unmsm.edu.pe/index.php/veterinaria/article/view/2039210.15381/rivep.v32i3.20392Revista de Investigaciones Veterinarias del Perú; Vol. 32 Núm. 3 (2021); e20392Revista de Investigaciones Veterinarias del Perú; Vol. 32 No. 3 (2021); e203921682-34191609-9117reponame:Revistas - Universidad Nacional Mayor de San Marcosinstname:Universidad Nacional Mayor de San Marcosinstacron:UNMSMspahttps://revistasinvestigacion.unmsm.edu.pe/index.php/veterinaria/article/view/20392/16801Derechos de autor 2021 Jimny Nuñez Delgado, Samuel Pizarro Carcausto, Marco Gutiérrez Tang, Javier Ñaupari Vásquezhttp://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessoai:ojs.csi.unmsm:article/203922021-06-30T16:38:53Z
score 13.906606
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).