Mathematical simulation of the evolution of the Covid-19 epidemic in the Metrropolitan Zone of Lima-Callao
Descripción del Articulo
This paper presents a mathematical model that simulates the evolution of health cases as a consequence of an infection with the coronavirus taking as reference the daily reports issued by the Ministry of Health for the whole Peruvian territory. In this work we put emphasis on the Metropolitan Area o...
Autor: | |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2020 |
Institución: | Universidad Nacional Mayor de San Marcos |
Repositorio: | Revistas - Universidad Nacional Mayor de San Marcos |
Lenguaje: | español |
OAI Identifier: | oai:ojs.csi.unmsm:article/20434 |
Enlace del recurso: | https://revistasinvestigacion.unmsm.edu.pe/index.php/fisica/article/view/20434 |
Nivel de acceso: | acceso abierto |
Materia: | Covid-19 mathematical simulation Lima-Callao Simulación matemática |
id |
REVUNMSM_ef6e78e22c6c39461c31ffd835ff8fe4 |
---|---|
oai_identifier_str |
oai:ojs.csi.unmsm:article/20434 |
network_acronym_str |
REVUNMSM |
network_name_str |
Revistas - Universidad Nacional Mayor de San Marcos |
repository_id_str |
|
spelling |
Mathematical simulation of the evolution of the Covid-19 epidemic in the Metrropolitan Zone of Lima-CallaoSimulación matemática de la evolución de la epidemia Covid-19 en la Zona Metropolitana de Lima-CallaoBravo, JorgeCovid-19mathematical simulationLima-CallaoCovid-19Simulación matemáticaLima-CallaoThis paper presents a mathematical model that simulates the evolution of health cases as a consequence of an infection with the coronavirus taking as reference the daily reports issued by the Ministry of Health for the whole Peruvian territory. In this work we put emphasis on the Metropolitan Area of Lima-Callao. For this purpose four probabilistic parameters are used, whose values are chosen in such a way that the model reproduces the reported number of cases. One of them quantifies the probability that a person can be infected per passing day, the second parameter the probability of recovering per passing day since the date the infection took place. The other two parameters are related to the probability of recovering or dying per each passing day. In this modeling two intervals of time are considered: an initial interval of 75 days during which the rate of infections is accelerated followed by an interval in which the rate of infections coincides with the final value of the first interval. The fitting of these parameters to the reported values give as result that the average numbers of days required for recovery is 27 days since the date of infection. Another result is that the maximum number of recovering patients will be about 115 thousand within six months, a fraction of which will require hospital care. The death rate used is 8%.Se presenta un modelo matemático que simula la evolución de casos como consecuencia del contagio con el coronavirus tomando como referencia los informes diarios que emite el Ministerio de Salud para todo el territorio del Perú. En este trabajo se ha puesto énfasis en la zona metropolitana de Lima-Callao. Para este fin se utilizan cuatro parámetros probabilísticos cuyos valores se escogen de manera que el modelo reproduzca los números de casos reportados. Uno de ellos cuantifica la probabilidad de que una persona se contagie por cada día que pasa, el segundo la probabilidad de ser dado de alta por cada día que ha transcurrido desde el día del contagio. Los otros dos parámetros cuantifican las fracciones de pacientes que superan el mal y los que fallecen. En este modelamiento se considera dos intervalos de tiempo: un intervalo inicial de 75 días en que la tasa de contagio es acelerada y un intervalo posterior que se inicia con la tasa final del primer intervalo. El ajuste de estos parámetros da como resultado que el número promedio de días para recuperarse del mal desde el día del contagio es de 27 días. Otro resultado es que el número máximo de pacientes activos llegará a alrededor de 115 mil pacientes a los seis meses del proceso, una fracción de los cuales necesitará hospitalización. La tasa de defunciones considerada es de 8%.Universidad Nacional Mayor de San Marcos2020-12-25info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://revistasinvestigacion.unmsm.edu.pe/index.php/fisica/article/view/2043410.15381/rif.v23i2.20434Revista de Investigación de Física; Vol. 23 No. 2 (2020); 46-49Revista de Investigación de Física; Vol. 23 Núm. 2 (2020); 46-491728-29771605-7724reponame:Revistas - Universidad Nacional Mayor de San Marcosinstname:Universidad Nacional Mayor de San Marcosinstacron:UNMSMspahttps://revistasinvestigacion.unmsm.edu.pe/index.php/fisica/article/view/20434/16696Derechos de autor 2020 Jorge Bravohttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessoai:ojs.csi.unmsm:article/204342021-08-29T19:43:20Z |
dc.title.none.fl_str_mv |
Mathematical simulation of the evolution of the Covid-19 epidemic in the Metrropolitan Zone of Lima-Callao Simulación matemática de la evolución de la epidemia Covid-19 en la Zona Metropolitana de Lima-Callao |
title |
Mathematical simulation of the evolution of the Covid-19 epidemic in the Metrropolitan Zone of Lima-Callao |
spellingShingle |
Mathematical simulation of the evolution of the Covid-19 epidemic in the Metrropolitan Zone of Lima-Callao Bravo, Jorge Covid-19 mathematical simulation Lima-Callao Covid-19 Simulación matemática Lima-Callao |
title_short |
Mathematical simulation of the evolution of the Covid-19 epidemic in the Metrropolitan Zone of Lima-Callao |
title_full |
Mathematical simulation of the evolution of the Covid-19 epidemic in the Metrropolitan Zone of Lima-Callao |
title_fullStr |
Mathematical simulation of the evolution of the Covid-19 epidemic in the Metrropolitan Zone of Lima-Callao |
title_full_unstemmed |
Mathematical simulation of the evolution of the Covid-19 epidemic in the Metrropolitan Zone of Lima-Callao |
title_sort |
Mathematical simulation of the evolution of the Covid-19 epidemic in the Metrropolitan Zone of Lima-Callao |
dc.creator.none.fl_str_mv |
Bravo, Jorge |
author |
Bravo, Jorge |
author_facet |
Bravo, Jorge |
author_role |
author |
dc.subject.none.fl_str_mv |
Covid-19 mathematical simulation Lima-Callao Covid-19 Simulación matemática Lima-Callao |
topic |
Covid-19 mathematical simulation Lima-Callao Covid-19 Simulación matemática Lima-Callao |
description |
This paper presents a mathematical model that simulates the evolution of health cases as a consequence of an infection with the coronavirus taking as reference the daily reports issued by the Ministry of Health for the whole Peruvian territory. In this work we put emphasis on the Metropolitan Area of Lima-Callao. For this purpose four probabilistic parameters are used, whose values are chosen in such a way that the model reproduces the reported number of cases. One of them quantifies the probability that a person can be infected per passing day, the second parameter the probability of recovering per passing day since the date the infection took place. The other two parameters are related to the probability of recovering or dying per each passing day. In this modeling two intervals of time are considered: an initial interval of 75 days during which the rate of infections is accelerated followed by an interval in which the rate of infections coincides with the final value of the first interval. The fitting of these parameters to the reported values give as result that the average numbers of days required for recovery is 27 days since the date of infection. Another result is that the maximum number of recovering patients will be about 115 thousand within six months, a fraction of which will require hospital care. The death rate used is 8%. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-12-25 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
https://revistasinvestigacion.unmsm.edu.pe/index.php/fisica/article/view/20434 10.15381/rif.v23i2.20434 |
url |
https://revistasinvestigacion.unmsm.edu.pe/index.php/fisica/article/view/20434 |
identifier_str_mv |
10.15381/rif.v23i2.20434 |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.relation.none.fl_str_mv |
https://revistasinvestigacion.unmsm.edu.pe/index.php/fisica/article/view/20434/16696 |
dc.rights.none.fl_str_mv |
Derechos de autor 2020 Jorge Bravo https://creativecommons.org/licenses/by/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Derechos de autor 2020 Jorge Bravo https://creativecommons.org/licenses/by/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidad Nacional Mayor de San Marcos |
publisher.none.fl_str_mv |
Universidad Nacional Mayor de San Marcos |
dc.source.none.fl_str_mv |
Revista de Investigación de Física; Vol. 23 No. 2 (2020); 46-49 Revista de Investigación de Física; Vol. 23 Núm. 2 (2020); 46-49 1728-2977 1605-7724 reponame:Revistas - Universidad Nacional Mayor de San Marcos instname:Universidad Nacional Mayor de San Marcos instacron:UNMSM |
instname_str |
Universidad Nacional Mayor de San Marcos |
instacron_str |
UNMSM |
institution |
UNMSM |
reponame_str |
Revistas - Universidad Nacional Mayor de San Marcos |
collection |
Revistas - Universidad Nacional Mayor de San Marcos |
repository.name.fl_str_mv |
|
repository.mail.fl_str_mv |
|
_version_ |
1795238319569764352 |
score |
13.959956 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).