Red tides or chemical purges associated with tectonic children
Descripción del Articulo
Red tides, considered by the international scientific community as harmful algae blooms (FAN), are colonies of phytoplankton and microalgae capable of developing massively. There are algae that probably associate their toxicity with the invasion of host bacteria and microorganisms from the acidic an...
Autores: | , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2000 |
Institución: | Universidad Nacional Mayor de San Marcos |
Repositorio: | Revistas - Universidad Nacional Mayor de San Marcos |
Lenguaje: | español |
OAI Identifier: | oai:ojs.csi.unmsm:article/2553 |
Enlace del recurso: | https://revistasinvestigacion.unmsm.edu.pe/index.php/iigeo/article/view/2553 |
Nivel de acceso: | acceso abierto |
Materia: | Red Tides Chemical Purges phytoplankton Child Tectonic phytoplankton microalgae chemosynthetic microorganisms Mareas Rojas Purgas Químicas Fitoplancton Niño Tectónico fitoplancton microalgas microorganismos quimiosintéticos |
Sumario: | Red tides, considered by the international scientific community as harmful algae blooms (FAN), are colonies of phytoplankton and microalgae capable of developing massively. There are algae that probably associate their toxicity with the invasion of host bacteria and microorganisms from the acidic and hot waters of the oxygen-poor ocean floor, as a product of intense underwater sulphurous volcanic activities. According to the El Niño Tectonic hypothesis, there is indirect evidence that the bacteria and chemosynthetic microorganisms that inhabit the acidic and hot waters, devoid of oxygen close to the active volcanoes of the ocean floor, synthesize the chemical compounds resulting from chemical, thermochemical reactions of fifty hundred isotopes and chemical elements released by sulphurous volcanoes; what conditions the multiplication of these toxic microorganisms, which when migrating later to the upper levels of the sea invade phytoplankton, algae and microalgae colonies, imparting various colorations as a result of the oxidation reactions of the volcanic broth saturated with bacteria, developing toxic properties to constitute the algal blooms of red tides or chemical purges. Red tides are frequently associated with two types of poisons: paralyzing venom (VPM), produced by dinoflagellate alexandrum catenella, and diarrheal shellfish venom (VDM), generated by dinophysis acuta. There are bacteria that normally live in symbiosis with mollusks, crustaceans, mussels in the gills of clams, in some special organs of tubular worms from the deep ocean and the by-product of their metabolism is filtered to the host animal as food that, in turn, imparts toxic properties. Red tides, considered by the international scientific community as harmful algae blooms (FAN), are colonies of phytoplankton and microalgae capable of developing massively. There are algae that probably associate their toxicity with the invasion of host bacteria and microorganisms from the acidic and hot waters of the oxygen-poor ocean floor, as a product of intense underwater sulphurous volcanic activities. According to the El Niño Tectonic hypothesis, there is indirect evidence that the bacteria and chemosynthetic microorganisms that inhabit the acidic and hot waters, devoid of oxygen close to the active volcanoes of the ocean floor, synthesize the chemical compounds resulting from chemical, thermochemical reactions of fifty hundred isotopes and chemical elements released by sulphurous volcanoes; what conditions the multiplication of these toxic microorganisms, which when migrating later to the upper levels of the sea invade phytoplankton, algae and microalgae colonies, imparting various colorations as a result of the oxidation reactions of the volcanic broth saturated with bacteria, developing toxic properties to constitute the algal blooms of red tides, or chemical purges. Frequently, red tides are associated with two types of poisons: paralyzing venom (VPM), produced by dinoflagellate alexandrum catenella, and diarrheal shellfish venom (VDM), generated by dinophysis acuta. There are bacteria that normally live in symbiosis with mollusks, crustaceans, mussels in the gills of clams, in some special organs of tubular worms from the deep ocean and the by-product of their metabolism is filtered to the host animal as food that, in turn, imparts toxic properties. |
---|
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).