A VIRTUAL LAB TO VISUALIZE THE PERFORMANCE OF THE HOPFIELD’S NEURAL NETWORK FOR ASSOCIATIVE CONTENT-ADDRESSABLE MEMORY

Descripción del Articulo

A software to appreciate the performance of the Hopfield’s Neural Network (Associative Content-Addressable Memory) has been developed and applied to computer synthesized images. A rather small network has been created and applied to four sets of training-remembrances. The software allows the user to...

Descripción completa

Detalles Bibliográficos
Autor: Montenegro Joo, Javier
Formato: artículo
Fecha de Publicación:2006
Institución:Universidad Nacional Mayor de San Marcos
Repositorio:Revistas - Universidad Nacional Mayor de San Marcos
Lenguaje:español
OAI Identifier:oai:ojs.csi.unmsm:article/8614
Enlace del recurso:https://revistasinvestigacion.unmsm.edu.pe/index.php/fisica/article/view/8614
Nivel de acceso:acceso abierto
Materia:Cybernetics
Artificial Intelligence
Artificial Neural Networks
Hopfield
Pattern Recognition
Image Reconstruction
Ising
Magnetism.
Cibernética
Inteligencia Artificial
Redes de Neuronas artificiales
Reconocimiento de patrones
Reconstrucción de imágenes
Magnetismo.
Descripción
Sumario:A software to appreciate the performance of the Hopfield’s Neural Network (Associative Content-Addressable Memory) has been developed and applied to computer synthesized images. A rather small network has been created and applied to four sets of training-remembrances. The software allows the user to become familiar with associative memory computer simulations, it also provides knowledge on the work of a neural net, hence this computer program may be used as a training tool (teach - learn) on neural networks. This software makes evident that a straightforward application of neural networks is in the field of pattern recognition and image reconstruction; it also serves as an introduction to more advanced and complex neural nets. This report is aimed at understanding the performance and potentials of a neural network, it may also foster the interest of students in cybernetics. The Hopfield neural network is important to physicists because it is closely related to the Ising Spin Glass model of magnetism, the learned memories in the net stand for the low energy states in the Ising model. A set of images (shown in this report) is included in the software, however it also accepts those made by the user.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).