Validation of an algorithm for processing Red Green Blue (RGB) images for the estimation of crude protein in grasses vs Near Infrared Reflectance Spectroscopy technology (NIRS)
Descripción del Articulo
The present work study aimed at evaluating the accuracy of the computerized algorithm included in the TaurusWebs ® software, which allows to calculate the percent of crude protein (% CP) in the dry matter of grasses, from images of grasslands taken by a drone with Red Green Blue – RGB- cameras. The...
| Autores: | , , , |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2020 |
| Institución: | Universidad Nacional Mayor de San Marcos |
| Repositorio: | Revistas - Universidad Nacional Mayor de San Marcos |
| Lenguaje: | español |
| OAI Identifier: | oai:ojs.csi.unmsm:article/17940 |
| Enlace del recurso: | https://revistasinvestigacion.unmsm.edu.pe/index.php/veterinaria/article/view/17940 |
| Nivel de acceso: | acceso abierto |
| Materia: | algorithm crude protein drone RGB NIRS algoritmo proteína cruda dron |
| id |
REVUNMSM_978f297fa7a7a1f8585c53d20c31dc12 |
|---|---|
| oai_identifier_str |
oai:ojs.csi.unmsm:article/17940 |
| network_acronym_str |
REVUNMSM |
| network_name_str |
Revistas - Universidad Nacional Mayor de San Marcos |
| repository_id_str |
|
| dc.title.none.fl_str_mv |
Validation of an algorithm for processing Red Green Blue (RGB) images for the estimation of crude protein in grasses vs Near Infrared Reflectance Spectroscopy technology (NIRS) Validación de un algoritmo de procesamiento de imágenes Red Green Blue (RGB), para la estimación de proteína cruda en gramíneas vs la tecnología de espectroscopía de infrarrojo cercano (NIRS) |
| title |
Validation of an algorithm for processing Red Green Blue (RGB) images for the estimation of crude protein in grasses vs Near Infrared Reflectance Spectroscopy technology (NIRS) |
| spellingShingle |
Validation of an algorithm for processing Red Green Blue (RGB) images for the estimation of crude protein in grasses vs Near Infrared Reflectance Spectroscopy technology (NIRS) Ospina R., Oscar algorithm crude protein drone RGB NIRS algoritmo proteína cruda dron RGB NIRS |
| title_short |
Validation of an algorithm for processing Red Green Blue (RGB) images for the estimation of crude protein in grasses vs Near Infrared Reflectance Spectroscopy technology (NIRS) |
| title_full |
Validation of an algorithm for processing Red Green Blue (RGB) images for the estimation of crude protein in grasses vs Near Infrared Reflectance Spectroscopy technology (NIRS) |
| title_fullStr |
Validation of an algorithm for processing Red Green Blue (RGB) images for the estimation of crude protein in grasses vs Near Infrared Reflectance Spectroscopy technology (NIRS) |
| title_full_unstemmed |
Validation of an algorithm for processing Red Green Blue (RGB) images for the estimation of crude protein in grasses vs Near Infrared Reflectance Spectroscopy technology (NIRS) |
| title_sort |
Validation of an algorithm for processing Red Green Blue (RGB) images for the estimation of crude protein in grasses vs Near Infrared Reflectance Spectroscopy technology (NIRS) |
| dc.creator.none.fl_str_mv |
Ospina R., Oscar Anzola Vásquez, Héctor Ayala Duarte, Olber Baracaldo Martínez, Andrea |
| author |
Ospina R., Oscar |
| author_facet |
Ospina R., Oscar Anzola Vásquez, Héctor Ayala Duarte, Olber Baracaldo Martínez, Andrea |
| author_role |
author |
| author2 |
Anzola Vásquez, Héctor Ayala Duarte, Olber Baracaldo Martínez, Andrea |
| author2_role |
author author author |
| dc.subject.none.fl_str_mv |
algorithm crude protein drone RGB NIRS algoritmo proteína cruda dron RGB NIRS |
| topic |
algorithm crude protein drone RGB NIRS algoritmo proteína cruda dron RGB NIRS |
| description |
The present work study aimed at evaluating the accuracy of the computerized algorithm included in the TaurusWebs ® software, which allows to calculate the percent of crude protein (% CP) in the dry matter of grasses, from images of grasslands taken by a drone with Red Green Blue – RGB- cameras. The %PC measurements calculated by the algorithm were compared to a reference, Near Infrared Reflectance Spectroscopy (NIRS), from the Corpoica (Agrosavia) Laboratory calibrated for grasses. Forty-two samples were taken for NIRS, 18 of high tropic grasses in Cundinamarca: kikuyo, Pennisetum clandestinum; false poa, Holcus lanatus; Brazilian grass, Phalaris arundinacea and 24 from the low tropics in Tolima, Colombia: pangola, Digitaria decumbens; pará, Brachiaria mutica; Bermuda, Cynodon dactylon and coloswana, Bothriochloa pertusa. The results of the NIRS were compared against the evaluations made with the algorithm to the images of the grasses, coming from the pasture where the samples were taken. The results were compared using nonparametric statistics, the Kendall correlation test and Spearman, rho=0.83 and the Kruskal Wallis test. No differences were found between the result of the %PC of grasses measured by NIRS vs. the %PC measured by the RGB image analysis algorithm. In conclusion, the information generated with the algorithm can be used for analysis jobs of the %PC in grasses. |
| publishDate |
2020 |
| dc.date.none.fl_str_mv |
2020-06-20 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
https://revistasinvestigacion.unmsm.edu.pe/index.php/veterinaria/article/view/17940 10.15381/rivep.v31i2.17940 |
| url |
https://revistasinvestigacion.unmsm.edu.pe/index.php/veterinaria/article/view/17940 |
| identifier_str_mv |
10.15381/rivep.v31i2.17940 |
| dc.language.none.fl_str_mv |
spa |
| language |
spa |
| dc.relation.none.fl_str_mv |
https://revistasinvestigacion.unmsm.edu.pe/index.php/veterinaria/article/view/17940/15075 |
| dc.rights.none.fl_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0 info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0 |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Universidad Nacional Mayor de San Marcos, Facultad de Medicina Veterinaria |
| publisher.none.fl_str_mv |
Universidad Nacional Mayor de San Marcos, Facultad de Medicina Veterinaria |
| dc.source.none.fl_str_mv |
Revista de Investigaciones Veterinarias del Perú; Vol. 31 Núm. 2 (2020); e17940 Revista de Investigaciones Veterinarias del Perú; Vol. 31 No. 2 (2020); e17940 1682-3419 1609-9117 reponame:Revistas - Universidad Nacional Mayor de San Marcos instname:Universidad Nacional Mayor de San Marcos instacron:UNMSM |
| instname_str |
Universidad Nacional Mayor de San Marcos |
| instacron_str |
UNMSM |
| institution |
UNMSM |
| reponame_str |
Revistas - Universidad Nacional Mayor de San Marcos |
| collection |
Revistas - Universidad Nacional Mayor de San Marcos |
| repository.name.fl_str_mv |
|
| repository.mail.fl_str_mv |
|
| _version_ |
1795238233414565888 |
| spelling |
Validation of an algorithm for processing Red Green Blue (RGB) images for the estimation of crude protein in grasses vs Near Infrared Reflectance Spectroscopy technology (NIRS)Validación de un algoritmo de procesamiento de imágenes Red Green Blue (RGB), para la estimación de proteína cruda en gramíneas vs la tecnología de espectroscopía de infrarrojo cercano (NIRS)Ospina R., OscarAnzola Vásquez, HéctorAyala Duarte, OlberBaracaldo Martínez, Andreaalgorithmcrude proteindroneRGBNIRSalgoritmoproteína crudadronRGBNIRSThe present work study aimed at evaluating the accuracy of the computerized algorithm included in the TaurusWebs ® software, which allows to calculate the percent of crude protein (% CP) in the dry matter of grasses, from images of grasslands taken by a drone with Red Green Blue – RGB- cameras. The %PC measurements calculated by the algorithm were compared to a reference, Near Infrared Reflectance Spectroscopy (NIRS), from the Corpoica (Agrosavia) Laboratory calibrated for grasses. Forty-two samples were taken for NIRS, 18 of high tropic grasses in Cundinamarca: kikuyo, Pennisetum clandestinum; false poa, Holcus lanatus; Brazilian grass, Phalaris arundinacea and 24 from the low tropics in Tolima, Colombia: pangola, Digitaria decumbens; pará, Brachiaria mutica; Bermuda, Cynodon dactylon and coloswana, Bothriochloa pertusa. The results of the NIRS were compared against the evaluations made with the algorithm to the images of the grasses, coming from the pasture where the samples were taken. The results were compared using nonparametric statistics, the Kendall correlation test and Spearman, rho=0.83 and the Kruskal Wallis test. No differences were found between the result of the %PC of grasses measured by NIRS vs. the %PC measured by the RGB image analysis algorithm. In conclusion, the information generated with the algorithm can be used for analysis jobs of the %PC in grasses. El presente trabajo estuvo orientado a evaluar la precisión del algoritmo de análisis de imágenes Red, Green, Blue (RGB), incluido en el software TaurusWebs ®, que permite calcular el porcentaje de proteína cruda de la materia seca (%PC) de las gramíneas a partir de imágenes de las praderas tomadas por un dron acoplado con cámaras RGB. Se compararon las mediciones del %PC calculadas por el algoritmo frente a un referente, Near Infrared Reflectance Spectroscopy (NIRS), del laboratorio de Corpoica (Agrosavia), calibrado para gramíneas. Se tomaron 42 muestras para NIRS, 18 de gramíneas de trópico alto en Cundinamarca: kikuyo, Pennisetum clandestinum; falsa poa, Holcus lanatus; pasto brasilero, Phalaris arundinacea y 24 de trópico bajo en Tolima, Colombia: pangola, Digitaria decumbens; pará, Brachiaria mutica; bermuda, Cynodon dactylon y colosuana, Bothriochloa pertusa. Los resultados del NIRS se compararon contra las evaluaciones hechas con el algoritmo de las imágenes de las gramíneas provenientes del mismo potrero donde se tomaron las muestras. Los resultados fueron comparados usando las pruebas no paramétricas de correlación de Kendall, rho=0.83 y de Kruskal Wallis. No se encontraron diferencias entre el resultado del %PC de las gramíneas medida por NIRS vs el %PC medida por el algoritmo de análisis de imágenes RGB. En conclusión, la información generada con el algoritmo se puede utilizar para trabajos de análisis del %PC en gramíneas.Universidad Nacional Mayor de San Marcos, Facultad de Medicina Veterinaria2020-06-20info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://revistasinvestigacion.unmsm.edu.pe/index.php/veterinaria/article/view/1794010.15381/rivep.v31i2.17940Revista de Investigaciones Veterinarias del Perú; Vol. 31 Núm. 2 (2020); e17940Revista de Investigaciones Veterinarias del Perú; Vol. 31 No. 2 (2020); e179401682-34191609-9117reponame:Revistas - Universidad Nacional Mayor de San Marcosinstname:Universidad Nacional Mayor de San Marcosinstacron:UNMSMspahttps://revistasinvestigacion.unmsm.edu.pe/index.php/veterinaria/article/view/17940/15075Derechos de autor 2020 Oscar Ospina R., Héctor Anzola Vásquez, Olber Ayala Duarte, Andrea Baracaldo Martínezhttps://creativecommons.org/licenses/by-nc-sa/4.0info:eu-repo/semantics/openAccessoai:ojs.csi.unmsm:article/179402020-06-23T14:46:03Z |
| score |
13.908724 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).