Validation of an algorithm for processing Red Green Blue (RGB) images for the estimation of crude protein in grasses vs Near Infrared Reflectance Spectroscopy technology (NIRS)

Descripción del Articulo

The present work study aimed at evaluating the accuracy of the computerized algorithm included in the TaurusWebs ® software, which allows to calculate the percent of crude protein (% CP) in the dry matter of grasses, from images of grasslands taken by a drone with Red Green Blue – RGB- cameras. The...

Descripción completa

Detalles Bibliográficos
Autores: Ospina R., Oscar, Anzola Vásquez, Héctor, Ayala Duarte, Olber, Baracaldo Martínez, Andrea
Formato: artículo
Fecha de Publicación:2020
Institución:Universidad Nacional Mayor de San Marcos
Repositorio:Revistas - Universidad Nacional Mayor de San Marcos
Lenguaje:español
OAI Identifier:oai:ojs.csi.unmsm:article/17940
Enlace del recurso:https://revistasinvestigacion.unmsm.edu.pe/index.php/veterinaria/article/view/17940
Nivel de acceso:acceso abierto
Materia:algorithm
crude protein
drone
RGB
NIRS
algoritmo
proteína cruda
dron
id REVUNMSM_978f297fa7a7a1f8585c53d20c31dc12
oai_identifier_str oai:ojs.csi.unmsm:article/17940
network_acronym_str REVUNMSM
network_name_str Revistas - Universidad Nacional Mayor de San Marcos
repository_id_str
dc.title.none.fl_str_mv Validation of an algorithm for processing Red Green Blue (RGB) images for the estimation of crude protein in grasses vs Near Infrared Reflectance Spectroscopy technology (NIRS)
Validación de un algoritmo de procesamiento de imágenes Red Green Blue (RGB), para la estimación de proteína cruda en gramíneas vs la tecnología de espectroscopía de infrarrojo cercano (NIRS)
title Validation of an algorithm for processing Red Green Blue (RGB) images for the estimation of crude protein in grasses vs Near Infrared Reflectance Spectroscopy technology (NIRS)
spellingShingle Validation of an algorithm for processing Red Green Blue (RGB) images for the estimation of crude protein in grasses vs Near Infrared Reflectance Spectroscopy technology (NIRS)
Ospina R., Oscar
algorithm
crude protein
drone
RGB
NIRS
algoritmo
proteína cruda
dron
RGB
NIRS
title_short Validation of an algorithm for processing Red Green Blue (RGB) images for the estimation of crude protein in grasses vs Near Infrared Reflectance Spectroscopy technology (NIRS)
title_full Validation of an algorithm for processing Red Green Blue (RGB) images for the estimation of crude protein in grasses vs Near Infrared Reflectance Spectroscopy technology (NIRS)
title_fullStr Validation of an algorithm for processing Red Green Blue (RGB) images for the estimation of crude protein in grasses vs Near Infrared Reflectance Spectroscopy technology (NIRS)
title_full_unstemmed Validation of an algorithm for processing Red Green Blue (RGB) images for the estimation of crude protein in grasses vs Near Infrared Reflectance Spectroscopy technology (NIRS)
title_sort Validation of an algorithm for processing Red Green Blue (RGB) images for the estimation of crude protein in grasses vs Near Infrared Reflectance Spectroscopy technology (NIRS)
dc.creator.none.fl_str_mv Ospina R., Oscar
Anzola Vásquez, Héctor
Ayala Duarte, Olber
Baracaldo Martínez, Andrea
author Ospina R., Oscar
author_facet Ospina R., Oscar
Anzola Vásquez, Héctor
Ayala Duarte, Olber
Baracaldo Martínez, Andrea
author_role author
author2 Anzola Vásquez, Héctor
Ayala Duarte, Olber
Baracaldo Martínez, Andrea
author2_role author
author
author
dc.subject.none.fl_str_mv algorithm
crude protein
drone
RGB
NIRS
algoritmo
proteína cruda
dron
RGB
NIRS
topic algorithm
crude protein
drone
RGB
NIRS
algoritmo
proteína cruda
dron
RGB
NIRS
description The present work study aimed at evaluating the accuracy of the computerized algorithm included in the TaurusWebs ® software, which allows to calculate the percent of crude protein (% CP) in the dry matter of grasses, from images of grasslands taken by a drone with Red Green Blue – RGB- cameras. The %PC measurements calculated by the algorithm were compared to a reference, Near Infrared Reflectance Spectroscopy (NIRS), from the Corpoica (Agrosavia) Laboratory calibrated for grasses. Forty-two samples were taken for NIRS, 18 of high tropic grasses in Cundinamarca: kikuyo, Pennisetum clandestinum; false poa, Holcus lanatus; Brazilian grass, Phalaris arundinacea and 24 from the low tropics in Tolima, Colombia: pangola, Digitaria decumbens; pará, Brachiaria mutica; Bermuda, Cynodon dactylon and coloswana, Bothriochloa pertusa. The results of the NIRS were compared against the evaluations made with the algorithm to the images of the grasses, coming from the pasture where the samples were taken. The results were compared using nonparametric statistics, the Kendall correlation test and Spearman, rho=0.83 and the Kruskal Wallis test. No differences were found between the result of the %PC of grasses measured by NIRS vs. the %PC measured by the RGB image analysis algorithm. In conclusion, the information generated with the algorithm can be used for analysis jobs of the %PC in grasses.
publishDate 2020
dc.date.none.fl_str_mv 2020-06-20
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv https://revistasinvestigacion.unmsm.edu.pe/index.php/veterinaria/article/view/17940
10.15381/rivep.v31i2.17940
url https://revistasinvestigacion.unmsm.edu.pe/index.php/veterinaria/article/view/17940
identifier_str_mv 10.15381/rivep.v31i2.17940
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv https://revistasinvestigacion.unmsm.edu.pe/index.php/veterinaria/article/view/17940/15075
dc.rights.none.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad Nacional Mayor de San Marcos, Facultad de Medicina Veterinaria
publisher.none.fl_str_mv Universidad Nacional Mayor de San Marcos, Facultad de Medicina Veterinaria
dc.source.none.fl_str_mv Revista de Investigaciones Veterinarias del Perú; Vol. 31 Núm. 2 (2020); e17940
Revista de Investigaciones Veterinarias del Perú; Vol. 31 No. 2 (2020); e17940
1682-3419
1609-9117
reponame:Revistas - Universidad Nacional Mayor de San Marcos
instname:Universidad Nacional Mayor de San Marcos
instacron:UNMSM
instname_str Universidad Nacional Mayor de San Marcos
instacron_str UNMSM
institution UNMSM
reponame_str Revistas - Universidad Nacional Mayor de San Marcos
collection Revistas - Universidad Nacional Mayor de San Marcos
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1795238233414565888
spelling Validation of an algorithm for processing Red Green Blue (RGB) images for the estimation of crude protein in grasses vs Near Infrared Reflectance Spectroscopy technology (NIRS)Validación de un algoritmo de procesamiento de imágenes Red Green Blue (RGB), para la estimación de proteína cruda en gramíneas vs la tecnología de espectroscopía de infrarrojo cercano (NIRS)Ospina R., OscarAnzola Vásquez, HéctorAyala Duarte, OlberBaracaldo Martínez, Andreaalgorithmcrude proteindroneRGBNIRSalgoritmoproteína crudadronRGBNIRSThe present work study aimed at evaluating the accuracy of the computerized algorithm included in the TaurusWebs ® software, which allows to calculate the percent of crude protein (% CP) in the dry matter of grasses, from images of grasslands taken by a drone with Red Green Blue – RGB- cameras. The %PC measurements calculated by the algorithm were compared to a reference, Near Infrared Reflectance Spectroscopy (NIRS), from the Corpoica (Agrosavia) Laboratory calibrated for grasses. Forty-two samples were taken for NIRS, 18 of high tropic grasses in Cundinamarca: kikuyo, Pennisetum clandestinum; false poa, Holcus lanatus; Brazilian grass, Phalaris arundinacea and 24 from the low tropics in Tolima, Colombia: pangola, Digitaria decumbens; pará, Brachiaria mutica; Bermuda, Cynodon dactylon and coloswana, Bothriochloa pertusa. The results of the NIRS were compared against the evaluations made with the algorithm to the images of the grasses, coming from the pasture where the samples were taken. The results were compared using nonparametric statistics, the Kendall correlation test and Spearman, rho=0.83 and the Kruskal Wallis test. No differences were found between the result of the %PC of grasses measured by NIRS vs. the %PC measured by the RGB image analysis algorithm. In conclusion, the information generated with the algorithm can be used for analysis jobs of the %PC in grasses.            El presente trabajo estuvo orientado a evaluar la precisión del algoritmo de análisis de imágenes Red, Green, Blue (RGB), incluido en el software TaurusWebs ®, que permite calcular el porcentaje de proteína cruda de la materia seca (%PC) de las gramíneas a partir de imágenes de las praderas tomadas por un dron acoplado con cámaras RGB. Se compararon las mediciones del %PC calculadas por el algoritmo frente a un referente, Near Infrared Reflectance Spectroscopy (NIRS), del laboratorio de Corpoica (Agrosavia), calibrado para gramíneas. Se tomaron 42 muestras para NIRS, 18 de gramíneas de trópico alto en Cundinamarca: kikuyo, Pennisetum clandestinum; falsa poa, Holcus lanatus; pasto brasilero, Phalaris arundinacea y 24 de trópico bajo en Tolima, Colombia: pangola, Digitaria decumbens; pará, Brachiaria mutica; bermuda, Cynodon dactylon y colosuana, Bothriochloa pertusa. Los resultados del NIRS se compararon contra las evaluaciones hechas con el algoritmo de las imágenes de las gramíneas provenientes del mismo potrero donde se tomaron las muestras. Los resultados fueron comparados usando las pruebas no paramétricas de correlación de Kendall, rho=0.83 y de Kruskal Wallis. No se encontraron diferencias entre el resultado del %PC de las gramíneas medida por NIRS vs el %PC medida por el algoritmo de análisis de imágenes RGB. En conclusión, la información generada con el algoritmo se puede utilizar para trabajos de análisis del %PC en gramíneas.Universidad Nacional Mayor de San Marcos, Facultad de Medicina Veterinaria2020-06-20info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://revistasinvestigacion.unmsm.edu.pe/index.php/veterinaria/article/view/1794010.15381/rivep.v31i2.17940Revista de Investigaciones Veterinarias del Perú; Vol. 31 Núm. 2 (2020); e17940Revista de Investigaciones Veterinarias del Perú; Vol. 31 No. 2 (2020); e179401682-34191609-9117reponame:Revistas - Universidad Nacional Mayor de San Marcosinstname:Universidad Nacional Mayor de San Marcosinstacron:UNMSMspahttps://revistasinvestigacion.unmsm.edu.pe/index.php/veterinaria/article/view/17940/15075Derechos de autor 2020 Oscar Ospina R., Héctor Anzola Vásquez, Olber Ayala Duarte, Andrea Baracaldo Martínezhttps://creativecommons.org/licenses/by-nc-sa/4.0info:eu-repo/semantics/openAccessoai:ojs.csi.unmsm:article/179402020-06-23T14:46:03Z
score 13.908724
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).