The Iwasawa's Theorem

Descripción del Articulo

Let G be a group, Ω a set and K = {g ∈ G | ω * g = ω, Ɐω ∈ Ω} the nucleus of Ω where G acts on the set Ω. We will show that G/K is simple in the case that the group G verifies to be primitive on Ω, as well as that it is equal to its derived subgroup and finally if α ∈ Ω then Gα has a subgroup A that...

Descripción completa

Detalles Bibliográficos
Autores: Mejía Alemán, Carlos, Santiago Saldaña, Mario Enrique
Formato: artículo
Fecha de Publicación:2021
Institución:Universidad Nacional Mayor de San Marcos
Repositorio:Revistas - Universidad Nacional Mayor de San Marcos
Lenguaje:español
OAI Identifier:oai:ojs.csi.unmsm:article/20511
Enlace del recurso:https://revistasinvestigacion.unmsm.edu.pe/index.php/matema/article/view/20511
Nivel de acceso:acceso abierto
Materia:action
transitive
primitive group
block and kernel
acción
transitivo
grupo primitivo
bloque y núcleo
Descripción
Sumario:Let G be a group, Ω a set and K = {g ∈ G | ω * g = ω, Ɐω ∈ Ω} the nucleus of Ω where G acts on the set Ω. We will show that G/K is simple in the case that the group G verifies to be primitive on Ω, as well as that it is equal to its derived subgroup and finally if α ∈ Ω then Gα has a subgroup A that is abelian and normal such that G =< Ag | g ∈ G >, where Gα is the stabilizer of α in G. To finish we will give an application that the alternating group A5 is simple.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).