1
artículo
Publicado 2021
Enlace
Enlace
Sean G un grupo, Ω un conjunto y K = {g ∈ G | ω * g = ω, Ɐω ∈ Ω} el núcleo de Ω donde G actua sobre el conjunto Ω. Mostraremos que G/K es simple en el caso que el grupo G verifique ser primitivo sobre Ω, así como también que sea igual a su subgrupo derivado y por último si α ∈ Ω entonces Gα tiene un subgrupo A que es abeliano y normal tal que G =< Ag | g ∈ G >, donde Gα es el estabilizador de α en G. Para finalizar daremos una aplicación de que el grupo alternante A5 es simple.
2
artículo
Publicado 2022
Enlace
Enlace
Daremos un ejemplo de un dominio de integridad que posee elementos no nulos con infinitos divisores primos.
3
artículo
Let p a prime number. The most familiar construction of the ring of p-adic integers ℤp, is as the projective limit of quotients of powers of the ideal (p)◁ℤ. There is another description of ℤp as a quotient of the power series ring ℤ[[X]], which can be found in some texts of p-adic analysis (see e.g. [3]). More specifically, there exists a ring isomorphism. Ψ : ℤ[[X]]/〈p − X〉 → ℤp. However, this isomorphism is also topological in nature, but there is no proof of this fact in the corresponding literature. In this article we will prove in sufficient detail that the above description is also valid in the context of topological rings.