The p-adic integers as a quotient of a ring of power series

Descripción del Articulo

Let p a prime number. The most familiar construction of the ring of p-adic integers ℤp, is as the projective limit of quotients of powers of the ideal (p)◁ℤ. There is another description of ℤp as a quotient of the power series ring ℤ[[X]], which can be found in some texts of p-adic analysis (see e.g...

Descripción completa

Detalles Bibliográficos
Autores: Caro Tuesta, Napoleón, Molina Sotomayor, Alex, Santiago Saldaña, Mario Enrique
Formato: artículo
Fecha de Publicación:2022
Institución:Universidad Nacional Mayor de San Marcos
Repositorio:Revistas - Universidad Nacional Mayor de San Marcos
Lenguaje:español
OAI Identifier:oai:ojs.csi.unmsm:article/21522
Enlace del recurso:https://revistasinvestigacion.unmsm.edu.pe/index.php/matema/article/view/21522
Nivel de acceso:acceso abierto
Materia:p-adic Integers
Power Seies
Projective Limit
isomorphism
quotient
Enteros p-ádicos
Series de Potencias
Límite Proyectivo
isomorfismo
cociente
Descripción
Sumario:Let p a prime number. The most familiar construction of the ring of p-adic integers ℤp, is as the projective limit of quotients of powers of the ideal (p)◁ℤ. There is another description of ℤp as a quotient of the power series ring ℤ[[X]], which can be found in some texts of p-adic analysis (see e.g. [3]). More specifically, there exists a ring isomorphism. Ψ : ℤ[[X]]/〈p − X〉 → ℤp. However, this isomorphism is also topological in nature, but there is no proof of this fact in the corresponding literature. In this article we will prove in sufficient detail that the above description is also valid in the context of topological rings.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).