Optimum routing and sequencing in a flexible multiobjective job shop using genetic algorithms

Descripción del Articulo

The paper proposes a genetic algorithm to solve optimally the problem of scheduling in a multi-objective production system Flexible Job Shop (FJS), currently of interest for many researchers, because it is a combinatorial optimization problem of complexity NP-hard, and because an optimal solution re...

Descripción completa

Detalles Bibliográficos
Autor: Tejada Muñoz, Guillermo
Formato: artículo
Fecha de Publicación:2016
Institución:Universidad Nacional Mayor de San Marcos
Repositorio:Revistas - Universidad Nacional Mayor de San Marcos
Lenguaje:español
OAI Identifier:oai:ojs.csi.unmsm:article/12846
Enlace del recurso:https://revistasinvestigacion.unmsm.edu.pe/index.php/idata/article/view/12846
Nivel de acceso:acceso abierto
Materia:Flexible Job Shop Scheduling Problem
Genetic Algorithms
Makespan
Maximum Workload
Total Workload.
Algoritmos Genéticos
Máximo Workload
Descripción
Sumario:The paper proposes a genetic algorithm to solve optimally the problem of scheduling in a multi-objective production system Flexible Job Shop (FJS), currently of interest for many researchers, because it is a combinatorial optimization problem of complexity NP-hard, and because an optimal solution results in an increase in production. the problem is divided, in the subproblem routing, where it is assigned to each operation of Jobs, one of the most optimum machines (from a set available) minimizing Maximum Workload, and Total Workload and subproblem sequencing, where it is found the optimal order of execution of operations (distributed on each machine) minimizing the Makespan. The algorithm is coded in Matlab M language, their performance is tested, solving complex problems, and the results are compared with those obtained by other researchers.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).