Predictive models of student desertion at a private Peruvian university

Descripción del Articulo

Desertion is a problem that affects public and private universities, and leads to a series of negative consequences for both institutions and students. Therefore, the objective of this study was to determine how the use of predictive models in low pass-rate courses helps to identify students at risk...

Descripción completa

Detalles Bibliográficos
Autor: Sifuentes Bitocchi, Oswaldo
Formato: artículo
Fecha de Publicación:2018
Institución:Universidad Nacional Mayor de San Marcos
Repositorio:Revistas - Universidad Nacional Mayor de San Marcos
Lenguaje:español
OAI Identifier:oai:ojs.csi.unmsm:article/15602
Enlace del recurso:https://revistasinvestigacion.unmsm.edu.pe/index.php/idata/article/view/15602
Nivel de acceso:acceso abierto
Materia:Deserción estudiantil
estudiantes universitarios
desaprobación
tutoría
modelos predictivos
Student desertion
university students
fail
mentoring
predictive models
id REVUNMSM_4adedd63f5fbd7a5f762638322f84908
oai_identifier_str oai:ojs.csi.unmsm:article/15602
network_acronym_str REVUNMSM
network_name_str Revistas - Universidad Nacional Mayor de San Marcos
repository_id_str
spelling Predictive models of student desertion at a private Peruvian universityModelos predictivos de la deserción estudiantil en una universidad privada peruanaSifuentes Bitocchi, OswaldoDeserción estudiantilestudiantes universitariosdesaprobacióntutoríamodelos predictivosStudent desertionuniversity studentsfailmentoringpredictive modelsDesertion is a problem that affects public and private universities, and leads to a series of negative consequences for both institutions and students. Therefore, the objective of this study was to determine how the use of predictive models in low pass-rate courses helps to identify students at risk of desertion. Seven predictive models were designed using CRISP (Cross- Industry Standard Process for Data Mining) methodology and students’ academic records to be applied in seven low pass-rate courses. Among the main results, it can be noted that predictive models contributed to the reduction of fail rates by 25% and 40%, and that the variables that best forecast desertion were career choice (vocation), number of times students enrolled in the course, and grades obtained in mathematics or language arts when students attended the fifth year of high school.La deserción es un problema que afecta a las universidades, públicas y privadas, y acarrea una serie de consecuencias negativas tanto para las instituciones como para los mismos jóvenes, por ello, el objetivo de este estudio fue determinar cómo el uso de modelos predictivos en asignaturas críticas contribuye a identificar a los estudiantes en riesgo de deserción. Se diseñaron siete modelos predictivos con la metodología CRISP (Cross-Industry Standard Process for Data Mining) y el historial académico de los estudiantes, para ser aplicados en siete cursos. Entre los principales resultados se puede destacar que los modelos predictivos contribuyeron a reducir en un 25 % y 40 % los niveles de desaprobación y las variables que mejor la predijeron fueron la carrera que estudian (vocación), el número de veces que se matriculan en la asignatura y la nota que tuvieron en matemática o comunicación cuando cursaron el quinto año de secundaria.Facultad de Ingeniería Industrial, Universidad Nacional Mayor de San Marcos2018-12-20info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://revistasinvestigacion.unmsm.edu.pe/index.php/idata/article/view/1560210.15381/idata.v21i2.15602Industrial Data; Vol. 21 No. 2 (2018); 47-52Industrial Data; Vol. 21 Núm. 2 (2018); 47-521810-99931560-9146reponame:Revistas - Universidad Nacional Mayor de San Marcosinstname:Universidad Nacional Mayor de San Marcosinstacron:UNMSMspahttps://revistasinvestigacion.unmsm.edu.pe/index.php/idata/article/view/15602/13376Derechos de autor 2018 Oswaldo Sifuentes Bitocchihttps://creativecommons.org/licenses/by-nc-sa/4.0info:eu-repo/semantics/openAccessoai:ojs.csi.unmsm:article/156022021-07-14T09:59:27Z
dc.title.none.fl_str_mv Predictive models of student desertion at a private Peruvian university
Modelos predictivos de la deserción estudiantil en una universidad privada peruana
title Predictive models of student desertion at a private Peruvian university
spellingShingle Predictive models of student desertion at a private Peruvian university
Sifuentes Bitocchi, Oswaldo
Deserción estudiantil
estudiantes universitarios
desaprobación
tutoría
modelos predictivos
Student desertion
university students
fail
mentoring
predictive models
title_short Predictive models of student desertion at a private Peruvian university
title_full Predictive models of student desertion at a private Peruvian university
title_fullStr Predictive models of student desertion at a private Peruvian university
title_full_unstemmed Predictive models of student desertion at a private Peruvian university
title_sort Predictive models of student desertion at a private Peruvian university
dc.creator.none.fl_str_mv Sifuentes Bitocchi, Oswaldo
author Sifuentes Bitocchi, Oswaldo
author_facet Sifuentes Bitocchi, Oswaldo
author_role author
dc.subject.none.fl_str_mv Deserción estudiantil
estudiantes universitarios
desaprobación
tutoría
modelos predictivos
Student desertion
university students
fail
mentoring
predictive models
topic Deserción estudiantil
estudiantes universitarios
desaprobación
tutoría
modelos predictivos
Student desertion
university students
fail
mentoring
predictive models
description Desertion is a problem that affects public and private universities, and leads to a series of negative consequences for both institutions and students. Therefore, the objective of this study was to determine how the use of predictive models in low pass-rate courses helps to identify students at risk of desertion. Seven predictive models were designed using CRISP (Cross- Industry Standard Process for Data Mining) methodology and students’ academic records to be applied in seven low pass-rate courses. Among the main results, it can be noted that predictive models contributed to the reduction of fail rates by 25% and 40%, and that the variables that best forecast desertion were career choice (vocation), number of times students enrolled in the course, and grades obtained in mathematics or language arts when students attended the fifth year of high school.
publishDate 2018
dc.date.none.fl_str_mv 2018-12-20
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv https://revistasinvestigacion.unmsm.edu.pe/index.php/idata/article/view/15602
10.15381/idata.v21i2.15602
url https://revistasinvestigacion.unmsm.edu.pe/index.php/idata/article/view/15602
identifier_str_mv 10.15381/idata.v21i2.15602
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv https://revistasinvestigacion.unmsm.edu.pe/index.php/idata/article/view/15602/13376
dc.rights.none.fl_str_mv Derechos de autor 2018 Oswaldo Sifuentes Bitocchi
https://creativecommons.org/licenses/by-nc-sa/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Derechos de autor 2018 Oswaldo Sifuentes Bitocchi
https://creativecommons.org/licenses/by-nc-sa/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Facultad de Ingeniería Industrial, Universidad Nacional Mayor de San Marcos
publisher.none.fl_str_mv Facultad de Ingeniería Industrial, Universidad Nacional Mayor de San Marcos
dc.source.none.fl_str_mv Industrial Data; Vol. 21 No. 2 (2018); 47-52
Industrial Data; Vol. 21 Núm. 2 (2018); 47-52
1810-9993
1560-9146
reponame:Revistas - Universidad Nacional Mayor de San Marcos
instname:Universidad Nacional Mayor de San Marcos
instacron:UNMSM
instname_str Universidad Nacional Mayor de San Marcos
instacron_str UNMSM
institution UNMSM
reponame_str Revistas - Universidad Nacional Mayor de San Marcos
collection Revistas - Universidad Nacional Mayor de San Marcos
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1795238303332564992
score 13.924112
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).