Predicción de infectados por Covid-19 en el Perú por el modelo de media móvil integrada autorregresiva

Descripción del Articulo

During the outbreak of the Covid-19 virus, several researchers have studied various mathematical models for predicting infections and deaths, as well as the rate of virus transmission. At present, the virus is still active with some variants and it is very important to know its behavior in order to...

Descripción completa

Detalles Bibliográficos
Autor: Aro Huanacuni, Alex Youn
Formato: artículo
Fecha de Publicación:2022
Institución:Universidad Nacional Jorge Basadre Grohmann
Repositorio:Revistas - Universidad Nacional Jorge Basadre Grohmann
Lenguaje:español
OAI Identifier:oai:revistas.unjbg.edu.pe:article/1237
Enlace del recurso:https://revistas.unjbg.edu.pe/index.php/cyd/article/view/1237
Nivel de acceso:acceso abierto
Materia:Infectados
Muertes
Modelo ARIMA
Predicción
Descripción
Sumario:During the outbreak of the Covid-19 virus, several researchers have studied various mathematical models for predicting infections and deaths, as well as the rate of virus transmission. At present, the virus is still active with some variants and it is very important to know its behavior in order to develop effective actions to control the current and future situation. In the research, we obtained predictions of cumulative Covid-19 infections for 38 days from December 23, 2021, using data recorded in the World Health Organization (WHO) for Peru and training the autoregressive integrated moving average (ARIMA) model in the software Python 3. The most optimal models obtained with real data test and according to EMPA and R2 are ARIMA(3,0,1) in the prediction of infected with EMPA=0.178 and R2=0.804 and ARIMA(3,1,1), with EMPA= 0.243 and R2=0.579, for prediction of deaths.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).