Simulation and identification of Dynamic Systems through Neural Networks trained with the Error Backpropagation Method and Teacher Forcing

Descripción del Articulo

This article presents the description and results of the application of the algorithm for the simulation and identification of nonlinear dynamic systems using artificial neural networks (ANN) trained with the error back-propagation method (BP back-propagation) and the teacher procedure. forcing (BPT...

Descripción completa

Detalles Bibliográficos
Autores: Leonardo Paucar, V., Rider, Marcos J., Morelato, André L.
Formato: artículo
Fecha de Publicación:2001
Institución:Universidad Nacional de Ingeniería
Repositorio:Revistas - Universidad Nacional de Ingeniería
Lenguaje:español
OAI Identifier:oai:oai:revistas.uni.edu.pe:article/531
Enlace del recurso:https://revistas.uni.edu.pe/index.php/tecnia/article/view/531
Nivel de acceso:acceso abierto
id REVUNI_b796749897e378371ee5c1a2229c1f39
oai_identifier_str oai:oai:revistas.uni.edu.pe:article/531
network_acronym_str REVUNI
network_name_str Revistas - Universidad Nacional de Ingeniería
repository_id_str
spelling Simulation and identification of Dynamic Systems through Neural Networks trained with the Error Backpropagation Method and Teacher ForcingSimulación e identificación de Sistemas Dinámicos mediante Redes Neuronales entrenadas con el Método de Retropropagación de Errores y Teacher ForcingLeonardo Paucar, V.Rider, Marcos J.Morelato, André L.This article presents the description and results of the application of the algorithm for the simulation and identification of nonlinear dynamic systems using artificial neural networks (ANN) trained with the error back-propagation method (BP back-propagation) and the teacher procedure. forcing (BPTF). Several configurations of neural networks of two layers of neurons were analyzed, one hidden and the other output. The proposed neural networks have been applied to two test systems, the double pendulum dynamic system and the third order induction motor. The results obtained allow us to estimate that the neural networks that adopt BPTF are quite useful for the simulation and identification of nonlinear dynamic systems, mainly during the first time steps after the periods with which the neural networks under study were trained.En el presente artículo se presenta la descripción y resultados de la aplicación del algoritmo para la simulación e identificación de sistemas dinámicos no lineales mediante redes neuronales artificiales (RNA) entrenadas con el método de retropropagación de errores (BP back-propagation) y el procedimiento teacher forcing (BPTF). Fueron analizadas varias configuraciones de redes neuronales de dos camadas de neuronas, una escondida y la otra de salida. Las redes neuronales propuestas han sido aplicadas a dos sistemas de prueba, el sistema dinámico del péndulo doble y el motor de inducción de tercer orden. Los resultados obtenidos permiten estimar que las redes neuronales que adoptan BPTF son bastante útiles para la simulación e identificación de sistemas dinámicos no lineales, principalmente durante los primeros pasos de tiempo posteriores a los períodos con los cuales fueron entrenadas las redes neuronales en estudio.Universidad Nacional de Ingeniería2001-06-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículo evaluado por paresapplication/pdfhttps://revistas.uni.edu.pe/index.php/tecnia/article/view/53110.21754/tecnia.v11i1.531TECNIA; Vol. 11 No. 1 (2001)TECNIA; Vol. 11 Núm. 1 (2001)2309-04130375-7765reponame:Revistas - Universidad Nacional de Ingenieríainstname:Universidad Nacional de Ingenieríainstacron:UNIspahttps://revistas.uni.edu.pe/index.php/tecnia/article/view/531/492Derechos de autor 2001 TECNIAhttp://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessoai:oai:revistas.uni.edu.pe:article/5312023-12-01T21:02:57Z
dc.title.none.fl_str_mv Simulation and identification of Dynamic Systems through Neural Networks trained with the Error Backpropagation Method and Teacher Forcing
Simulación e identificación de Sistemas Dinámicos mediante Redes Neuronales entrenadas con el Método de Retropropagación de Errores y Teacher Forcing
title Simulation and identification of Dynamic Systems through Neural Networks trained with the Error Backpropagation Method and Teacher Forcing
spellingShingle Simulation and identification of Dynamic Systems through Neural Networks trained with the Error Backpropagation Method and Teacher Forcing
Leonardo Paucar, V.
title_short Simulation and identification of Dynamic Systems through Neural Networks trained with the Error Backpropagation Method and Teacher Forcing
title_full Simulation and identification of Dynamic Systems through Neural Networks trained with the Error Backpropagation Method and Teacher Forcing
title_fullStr Simulation and identification of Dynamic Systems through Neural Networks trained with the Error Backpropagation Method and Teacher Forcing
title_full_unstemmed Simulation and identification of Dynamic Systems through Neural Networks trained with the Error Backpropagation Method and Teacher Forcing
title_sort Simulation and identification of Dynamic Systems through Neural Networks trained with the Error Backpropagation Method and Teacher Forcing
dc.creator.none.fl_str_mv Leonardo Paucar, V.
Rider, Marcos J.
Morelato, André L.
author Leonardo Paucar, V.
author_facet Leonardo Paucar, V.
Rider, Marcos J.
Morelato, André L.
author_role author
author2 Rider, Marcos J.
Morelato, André L.
author2_role author
author
description This article presents the description and results of the application of the algorithm for the simulation and identification of nonlinear dynamic systems using artificial neural networks (ANN) trained with the error back-propagation method (BP back-propagation) and the teacher procedure. forcing (BPTF). Several configurations of neural networks of two layers of neurons were analyzed, one hidden and the other output. The proposed neural networks have been applied to two test systems, the double pendulum dynamic system and the third order induction motor. The results obtained allow us to estimate that the neural networks that adopt BPTF are quite useful for the simulation and identification of nonlinear dynamic systems, mainly during the first time steps after the periods with which the neural networks under study were trained.
publishDate 2001
dc.date.none.fl_str_mv 2001-06-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Artículo evaluado por pares
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv https://revistas.uni.edu.pe/index.php/tecnia/article/view/531
10.21754/tecnia.v11i1.531
url https://revistas.uni.edu.pe/index.php/tecnia/article/view/531
identifier_str_mv 10.21754/tecnia.v11i1.531
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv https://revistas.uni.edu.pe/index.php/tecnia/article/view/531/492
dc.rights.none.fl_str_mv Derechos de autor 2001 TECNIA
http://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Derechos de autor 2001 TECNIA
http://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad Nacional de Ingeniería
publisher.none.fl_str_mv Universidad Nacional de Ingeniería
dc.source.none.fl_str_mv TECNIA; Vol. 11 No. 1 (2001)
TECNIA; Vol. 11 Núm. 1 (2001)
2309-0413
0375-7765
reponame:Revistas - Universidad Nacional de Ingeniería
instname:Universidad Nacional de Ingeniería
instacron:UNI
instname_str Universidad Nacional de Ingeniería
instacron_str UNI
institution UNI
reponame_str Revistas - Universidad Nacional de Ingeniería
collection Revistas - Universidad Nacional de Ingeniería
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1833562778457079808
score 13.968331
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).