Simulation and identification of Dynamic Systems through Neural Networks trained with the Error Backpropagation Method and Teacher Forcing
Descripción del Articulo
This article presents the description and results of the application of the algorithm for the simulation and identification of nonlinear dynamic systems using artificial neural networks (ANN) trained with the error back-propagation method (BP back-propagation) and the teacher procedure. forcing (BPT...
| Autores: | , , |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2001 |
| Institución: | Universidad Nacional de Ingeniería |
| Repositorio: | Revistas - Universidad Nacional de Ingeniería |
| Lenguaje: | español |
| OAI Identifier: | oai:oai:revistas.uni.edu.pe:article/531 |
| Enlace del recurso: | https://revistas.uni.edu.pe/index.php/tecnia/article/view/531 |
| Nivel de acceso: | acceso abierto |
| id |
REVUNI_b796749897e378371ee5c1a2229c1f39 |
|---|---|
| oai_identifier_str |
oai:oai:revistas.uni.edu.pe:article/531 |
| network_acronym_str |
REVUNI |
| network_name_str |
Revistas - Universidad Nacional de Ingeniería |
| repository_id_str |
|
| spelling |
Simulation and identification of Dynamic Systems through Neural Networks trained with the Error Backpropagation Method and Teacher ForcingSimulación e identificación de Sistemas Dinámicos mediante Redes Neuronales entrenadas con el Método de Retropropagación de Errores y Teacher ForcingLeonardo Paucar, V.Rider, Marcos J.Morelato, André L.This article presents the description and results of the application of the algorithm for the simulation and identification of nonlinear dynamic systems using artificial neural networks (ANN) trained with the error back-propagation method (BP back-propagation) and the teacher procedure. forcing (BPTF). Several configurations of neural networks of two layers of neurons were analyzed, one hidden and the other output. The proposed neural networks have been applied to two test systems, the double pendulum dynamic system and the third order induction motor. The results obtained allow us to estimate that the neural networks that adopt BPTF are quite useful for the simulation and identification of nonlinear dynamic systems, mainly during the first time steps after the periods with which the neural networks under study were trained.En el presente artículo se presenta la descripción y resultados de la aplicación del algoritmo para la simulación e identificación de sistemas dinámicos no lineales mediante redes neuronales artificiales (RNA) entrenadas con el método de retropropagación de errores (BP back-propagation) y el procedimiento teacher forcing (BPTF). Fueron analizadas varias configuraciones de redes neuronales de dos camadas de neuronas, una escondida y la otra de salida. Las redes neuronales propuestas han sido aplicadas a dos sistemas de prueba, el sistema dinámico del péndulo doble y el motor de inducción de tercer orden. Los resultados obtenidos permiten estimar que las redes neuronales que adoptan BPTF son bastante útiles para la simulación e identificación de sistemas dinámicos no lineales, principalmente durante los primeros pasos de tiempo posteriores a los períodos con los cuales fueron entrenadas las redes neuronales en estudio.Universidad Nacional de Ingeniería2001-06-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículo evaluado por paresapplication/pdfhttps://revistas.uni.edu.pe/index.php/tecnia/article/view/53110.21754/tecnia.v11i1.531TECNIA; Vol. 11 No. 1 (2001)TECNIA; Vol. 11 Núm. 1 (2001)2309-04130375-7765reponame:Revistas - Universidad Nacional de Ingenieríainstname:Universidad Nacional de Ingenieríainstacron:UNIspahttps://revistas.uni.edu.pe/index.php/tecnia/article/view/531/492Derechos de autor 2001 TECNIAhttp://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessoai:oai:revistas.uni.edu.pe:article/5312023-12-01T21:02:57Z |
| dc.title.none.fl_str_mv |
Simulation and identification of Dynamic Systems through Neural Networks trained with the Error Backpropagation Method and Teacher Forcing Simulación e identificación de Sistemas Dinámicos mediante Redes Neuronales entrenadas con el Método de Retropropagación de Errores y Teacher Forcing |
| title |
Simulation and identification of Dynamic Systems through Neural Networks trained with the Error Backpropagation Method and Teacher Forcing |
| spellingShingle |
Simulation and identification of Dynamic Systems through Neural Networks trained with the Error Backpropagation Method and Teacher Forcing Leonardo Paucar, V. |
| title_short |
Simulation and identification of Dynamic Systems through Neural Networks trained with the Error Backpropagation Method and Teacher Forcing |
| title_full |
Simulation and identification of Dynamic Systems through Neural Networks trained with the Error Backpropagation Method and Teacher Forcing |
| title_fullStr |
Simulation and identification of Dynamic Systems through Neural Networks trained with the Error Backpropagation Method and Teacher Forcing |
| title_full_unstemmed |
Simulation and identification of Dynamic Systems through Neural Networks trained with the Error Backpropagation Method and Teacher Forcing |
| title_sort |
Simulation and identification of Dynamic Systems through Neural Networks trained with the Error Backpropagation Method and Teacher Forcing |
| dc.creator.none.fl_str_mv |
Leonardo Paucar, V. Rider, Marcos J. Morelato, André L. |
| author |
Leonardo Paucar, V. |
| author_facet |
Leonardo Paucar, V. Rider, Marcos J. Morelato, André L. |
| author_role |
author |
| author2 |
Rider, Marcos J. Morelato, André L. |
| author2_role |
author author |
| description |
This article presents the description and results of the application of the algorithm for the simulation and identification of nonlinear dynamic systems using artificial neural networks (ANN) trained with the error back-propagation method (BP back-propagation) and the teacher procedure. forcing (BPTF). Several configurations of neural networks of two layers of neurons were analyzed, one hidden and the other output. The proposed neural networks have been applied to two test systems, the double pendulum dynamic system and the third order induction motor. The results obtained allow us to estimate that the neural networks that adopt BPTF are quite useful for the simulation and identification of nonlinear dynamic systems, mainly during the first time steps after the periods with which the neural networks under study were trained. |
| publishDate |
2001 |
| dc.date.none.fl_str_mv |
2001-06-01 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Artículo evaluado por pares |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
https://revistas.uni.edu.pe/index.php/tecnia/article/view/531 10.21754/tecnia.v11i1.531 |
| url |
https://revistas.uni.edu.pe/index.php/tecnia/article/view/531 |
| identifier_str_mv |
10.21754/tecnia.v11i1.531 |
| dc.language.none.fl_str_mv |
spa |
| language |
spa |
| dc.relation.none.fl_str_mv |
https://revistas.uni.edu.pe/index.php/tecnia/article/view/531/492 |
| dc.rights.none.fl_str_mv |
Derechos de autor 2001 TECNIA http://creativecommons.org/licenses/by/4.0 info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Derechos de autor 2001 TECNIA http://creativecommons.org/licenses/by/4.0 |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Universidad Nacional de Ingeniería |
| publisher.none.fl_str_mv |
Universidad Nacional de Ingeniería |
| dc.source.none.fl_str_mv |
TECNIA; Vol. 11 No. 1 (2001) TECNIA; Vol. 11 Núm. 1 (2001) 2309-0413 0375-7765 reponame:Revistas - Universidad Nacional de Ingeniería instname:Universidad Nacional de Ingeniería instacron:UNI |
| instname_str |
Universidad Nacional de Ingeniería |
| instacron_str |
UNI |
| institution |
UNI |
| reponame_str |
Revistas - Universidad Nacional de Ingeniería |
| collection |
Revistas - Universidad Nacional de Ingeniería |
| repository.name.fl_str_mv |
|
| repository.mail.fl_str_mv |
|
| _version_ |
1833562778457079808 |
| score |
13.968331 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).