Mostrando 1 - 3 Resultados de 3 Para Buscar 'Morelato, André L.', tiempo de consulta: 0.39s Limitar resultados
2
artículo
En el presente artículo se presenta la descripción y resultados de la aplicación del algoritmo para la simulación e identificación de sistemas dinámicos no lineales mediante redes neuronales artificiales (RNA) entrenadas con el método de retropropagación de errores (BP - back-propagation) y el procedimiento teacher forcing (BPTF). Fueron analizadas varias configuraciones de redes neuronales de dos camadas de neuronas, una escondida y la otra de salida. Las redes neuronales propuestas han sido aplicadas a dos sistemas de prueba, el sistema dinámico del péndulo doble y el motor de inducción de tercer orden. Los resultados obtenidos permiten estimar que las redes neuronales que adoptan BPTF son bastante útiles para la simulación e identificación de sistemas dinámicos no lineales, principal­mente durante los primeros pasos de tiempo posteriores a los períodos con los cuales ...
3
artículo
This article presents the description and results of the application of the algorithm for the simulation and identification of nonlinear dynamic systems using artificial neural networks (ANN) trained with the error back-propagation method (BP back-propagation) and the teacher procedure. forcing (BPTF). Several configurations of neural networks of two layers of neurons were analyzed, one hidden and the other output. The proposed neural networks have been applied to two test systems, the double pendulum dynamic system and the third order induction motor. The results obtained allow us to estimate that the neural networks that adopt BPTF are quite useful for the simulation and identification of nonlinear dynamic systems, mainly during the first time steps after the periods with which the neural networks under study were trained.