Data-Driven Decision Making on Amazon: A Methodology for Assessing Product Potential and Competition

Descripción del Articulo

Amazon Marketplace, especially for small and medium-sized businesses, represents a strategic tool for selecting and positioning products. While research exists on market access criteria, evaluating a product's potential and the competition requires more precise approaches. This study proposes a...

Descripción completa

Detalles Bibliográficos
Autor: Korshun, Artem
Formato: artículo
Fecha de Publicación:2025
Institución:Universidad Nacional de Ingeniería
Repositorio:Revistas - Universidad Nacional de Ingeniería
Lenguaje:español
inglés
OAI Identifier:oai:oai:revistas.uni.edu.pe:article/2598
Enlace del recurso:https://revistas.uni.edu.pe/index.php/iecos/article/view/2598
Nivel de acceso:acceso abierto
Materia:Decision-making
Competence
Methodology
Toma de decisiones
Competencia
Metodología
id REVUNI_a01907c8d918b595fadaa42b4c0a1dbc
oai_identifier_str oai:oai:revistas.uni.edu.pe:article/2598
network_acronym_str REVUNI
network_name_str Revistas - Universidad Nacional de Ingeniería
repository_id_str
dc.title.none.fl_str_mv Data-Driven Decision Making on Amazon: A Methodology for Assessing Product Potential and Competition
Toma de decisiones basada en datos en Amazon: Una metodología para evaluar el potencial de los productos y la competencia
title Data-Driven Decision Making on Amazon: A Methodology for Assessing Product Potential and Competition
spellingShingle Data-Driven Decision Making on Amazon: A Methodology for Assessing Product Potential and Competition
Korshun, Artem
Decision-making
Competence
Methodology
Toma de decisiones
Competencia
Metodología
title_short Data-Driven Decision Making on Amazon: A Methodology for Assessing Product Potential and Competition
title_full Data-Driven Decision Making on Amazon: A Methodology for Assessing Product Potential and Competition
title_fullStr Data-Driven Decision Making on Amazon: A Methodology for Assessing Product Potential and Competition
title_full_unstemmed Data-Driven Decision Making on Amazon: A Methodology for Assessing Product Potential and Competition
title_sort Data-Driven Decision Making on Amazon: A Methodology for Assessing Product Potential and Competition
dc.creator.none.fl_str_mv Korshun, Artem
author Korshun, Artem
author_facet Korshun, Artem
author_role author
dc.subject.none.fl_str_mv Decision-making
Competence
Methodology
Toma de decisiones
Competencia
Metodología
topic Decision-making
Competence
Methodology
Toma de decisiones
Competencia
Metodología
description Amazon Marketplace, especially for small and medium-sized businesses, represents a strategic tool for selecting and positioning products. While research exists on market access criteria, evaluating a product's potential and the competition requires more precise approaches. This study proposes an integrated methodological framework based on three axes: keyword relevance, market size, and level of competition, adapted to the context of sellers on Amazon. The methodology combines quantitative and qualitative techniques. Tools such as Helium 10 and Keepa are used to analyze keywords, pricing, and competitive dynamics, along with market research. Keyword frequency analysis and the identification of commercial terms allow for measuring visibility and opportunities of interest. Subsequently, financial viability is assessed by considering profit margins and inventory turnover. Keepa helps identify pricing strategies, competitor longevity, and niche sustainability, while Helium 10 detects pricing anomalies and unethical practices. The results show that the correct selection of keywords directly impacts visibility, and that accurate market size estimation reduces risks in saturated or declining niches. Niches with moderate competition, favorable financial metrics, and keyword relevance between 30% and 60% were identified, ensuring greater stability and conversion. In conclusion, this methodological framework offers a clear and strategic guide for Amazon sellers, addressing shortcomings in product and competitor evaluation, and proposes future studies with predictive tools to optimize the accuracy and scalability of keyword selection.
publishDate 2025
dc.date.none.fl_str_mv 2025-09-30
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Peer Reviewed
Evaluado por pares
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv https://revistas.uni.edu.pe/index.php/iecos/article/view/2598
10.21754/iecos.v26i2.2598
url https://revistas.uni.edu.pe/index.php/iecos/article/view/2598
identifier_str_mv 10.21754/iecos.v26i2.2598
dc.language.none.fl_str_mv spa
eng
language spa
eng
dc.relation.none.fl_str_mv https://revistas.uni.edu.pe/index.php/iecos/article/view/2598/3436
https://revistas.uni.edu.pe/index.php/iecos/article/view/2598/3543
https://revistas.uni.edu.pe/index.php/iecos/article/view/2598/3544
https://revistas.uni.edu.pe/index.php/iecos/article/view/2598/3545
https://revistas.uni.edu.pe/index.php/iecos/article/view/2598/3546
dc.rights.none.fl_str_mv Derechos de autor 2025 Artem Korshun
https://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Derechos de autor 2025 Artem Korshun
https://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
text/html
application/epub+zip
audio/mpeg
audio/mpeg
dc.publisher.none.fl_str_mv Universidad Nacional de Ingeniería
publisher.none.fl_str_mv Universidad Nacional de Ingeniería
dc.source.none.fl_str_mv revista IECOS; Vol. 26 No. 2 (2025); 132-144
Revista IECOS; Vol. 26 Núm. 2 (2025); 132-144
2788-7480
2961-2845
10.21754/iecos.v26i2
reponame:Revistas - Universidad Nacional de Ingeniería
instname:Universidad Nacional de Ingeniería
instacron:UNI
instname_str Universidad Nacional de Ingeniería
instacron_str UNI
institution UNI
reponame_str Revistas - Universidad Nacional de Ingeniería
collection Revistas - Universidad Nacional de Ingeniería
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1851319783404863488
spelling Data-Driven Decision Making on Amazon: A Methodology for Assessing Product Potential and CompetitionToma de decisiones basada en datos en Amazon: Una metodología para evaluar el potencial de los productos y la competenciaKorshun, ArtemDecision-makingCompetenceMethodologyToma de decisionesCompetenciaMetodologíaAmazon Marketplace, especially for small and medium-sized businesses, represents a strategic tool for selecting and positioning products. While research exists on market access criteria, evaluating a product's potential and the competition requires more precise approaches. This study proposes an integrated methodological framework based on three axes: keyword relevance, market size, and level of competition, adapted to the context of sellers on Amazon. The methodology combines quantitative and qualitative techniques. Tools such as Helium 10 and Keepa are used to analyze keywords, pricing, and competitive dynamics, along with market research. Keyword frequency analysis and the identification of commercial terms allow for measuring visibility and opportunities of interest. Subsequently, financial viability is assessed by considering profit margins and inventory turnover. Keepa helps identify pricing strategies, competitor longevity, and niche sustainability, while Helium 10 detects pricing anomalies and unethical practices. The results show that the correct selection of keywords directly impacts visibility, and that accurate market size estimation reduces risks in saturated or declining niches. Niches with moderate competition, favorable financial metrics, and keyword relevance between 30% and 60% were identified, ensuring greater stability and conversion. In conclusion, this methodological framework offers a clear and strategic guide for Amazon sellers, addressing shortcomings in product and competitor evaluation, and proposes future studies with predictive tools to optimize the accuracy and scalability of keyword selection.Amazon Marketplace, especialmente para pequeñas y medianas empresas, representa una herramienta estratégica para seleccionar y posicionar productos. Aunque existen investigaciones sobre criterios de acceso al mercado, la evaluación del potencial de un producto y la competencia requiere enfoques más precisos. Este estudio propone un marco metodológico integrador basado en tres ejes: relevancia de palabras clave, tamaño del mercado y nivel de competencia, adaptados al contexto de los vendedores en Amazon. La metodología combina técnicas cuantitativas y cualitativas. Se utilizan herramientas como Helium 10 y Keepa para analizar palabras clave, precios y dinámicas competitivas, junto con estudios de mercado. El análisis de la frecuencia de palabras clave y la identificación de términos comerciales permiten medir la visibilidad y las oportunidades de interés. Posteriormente, se evalúa la viabilidad financiera considerando márgenes de beneficio y rotación de inventarios. Keepa contribuye a identificar estrategias de precios, longevidad de la competencia y sostenibilidad de nichos; mientras que Helium 10 detecta anomalías en precios y prácticas poco éticas. Los resultados muestran que la correcta selección de palabras clave impacta directamente en la visibilidad, y que la estimación adecuada del tamaño del mercado reduce riesgos en nichos saturados o en declive. Se identificaron nichos con competencia moderada, métricas financieras favorables y relevancia de palabras clave entre el 30 % y el 60 %, lo que asegura mayor estabilidad y conversión. En conclusión, este marco metodológico ofrece una guía clara y estratégica para los vendedores de Amazon, resolviendo deficiencias en la evaluación de productos y competencia, y propone estudios futuros con herramientas predictivas que optimicen la precisión y escalabilidad de la selección.Universidad Nacional de Ingeniería2025-09-30info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionPeer ReviewedEvaluado por paresapplication/pdftext/htmlapplication/epub+zipaudio/mpegaudio/mpeghttps://revistas.uni.edu.pe/index.php/iecos/article/view/259810.21754/iecos.v26i2.2598revista IECOS; Vol. 26 No. 2 (2025); 132-144Revista IECOS; Vol. 26 Núm. 2 (2025); 132-1442788-74802961-284510.21754/iecos.v26i2reponame:Revistas - Universidad Nacional de Ingenieríainstname:Universidad Nacional de Ingenieríainstacron:UNIspaenghttps://revistas.uni.edu.pe/index.php/iecos/article/view/2598/3436https://revistas.uni.edu.pe/index.php/iecos/article/view/2598/3543https://revistas.uni.edu.pe/index.php/iecos/article/view/2598/3544https://revistas.uni.edu.pe/index.php/iecos/article/view/2598/3545https://revistas.uni.edu.pe/index.php/iecos/article/view/2598/3546Derechos de autor 2025 Artem Korshunhttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessoai:oai:revistas.uni.edu.pe:article/25982025-11-30T01:30:57Z
score 13.109707
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).