Data-Driven Decision Making on Amazon: A Methodology for Assessing Product Potential and Competition
Descripción del Articulo
Amazon Marketplace, especially for small and medium-sized businesses, represents a strategic tool for selecting and positioning products. While research exists on market access criteria, evaluating a product's potential and the competition requires more precise approaches. This study proposes a...
| Autor: | |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2025 |
| Institución: | Universidad Nacional de Ingeniería |
| Repositorio: | Revistas - Universidad Nacional de Ingeniería |
| Lenguaje: | español inglés |
| OAI Identifier: | oai:oai:revistas.uni.edu.pe:article/2598 |
| Enlace del recurso: | https://revistas.uni.edu.pe/index.php/iecos/article/view/2598 |
| Nivel de acceso: | acceso abierto |
| Materia: | Decision-making Competence Methodology Toma de decisiones Competencia Metodología |
| id |
REVUNI_a01907c8d918b595fadaa42b4c0a1dbc |
|---|---|
| oai_identifier_str |
oai:oai:revistas.uni.edu.pe:article/2598 |
| network_acronym_str |
REVUNI |
| network_name_str |
Revistas - Universidad Nacional de Ingeniería |
| repository_id_str |
|
| dc.title.none.fl_str_mv |
Data-Driven Decision Making on Amazon: A Methodology for Assessing Product Potential and Competition Toma de decisiones basada en datos en Amazon: Una metodología para evaluar el potencial de los productos y la competencia |
| title |
Data-Driven Decision Making on Amazon: A Methodology for Assessing Product Potential and Competition |
| spellingShingle |
Data-Driven Decision Making on Amazon: A Methodology for Assessing Product Potential and Competition Korshun, Artem Decision-making Competence Methodology Toma de decisiones Competencia Metodología |
| title_short |
Data-Driven Decision Making on Amazon: A Methodology for Assessing Product Potential and Competition |
| title_full |
Data-Driven Decision Making on Amazon: A Methodology for Assessing Product Potential and Competition |
| title_fullStr |
Data-Driven Decision Making on Amazon: A Methodology for Assessing Product Potential and Competition |
| title_full_unstemmed |
Data-Driven Decision Making on Amazon: A Methodology for Assessing Product Potential and Competition |
| title_sort |
Data-Driven Decision Making on Amazon: A Methodology for Assessing Product Potential and Competition |
| dc.creator.none.fl_str_mv |
Korshun, Artem |
| author |
Korshun, Artem |
| author_facet |
Korshun, Artem |
| author_role |
author |
| dc.subject.none.fl_str_mv |
Decision-making Competence Methodology Toma de decisiones Competencia Metodología |
| topic |
Decision-making Competence Methodology Toma de decisiones Competencia Metodología |
| description |
Amazon Marketplace, especially for small and medium-sized businesses, represents a strategic tool for selecting and positioning products. While research exists on market access criteria, evaluating a product's potential and the competition requires more precise approaches. This study proposes an integrated methodological framework based on three axes: keyword relevance, market size, and level of competition, adapted to the context of sellers on Amazon. The methodology combines quantitative and qualitative techniques. Tools such as Helium 10 and Keepa are used to analyze keywords, pricing, and competitive dynamics, along with market research. Keyword frequency analysis and the identification of commercial terms allow for measuring visibility and opportunities of interest. Subsequently, financial viability is assessed by considering profit margins and inventory turnover. Keepa helps identify pricing strategies, competitor longevity, and niche sustainability, while Helium 10 detects pricing anomalies and unethical practices. The results show that the correct selection of keywords directly impacts visibility, and that accurate market size estimation reduces risks in saturated or declining niches. Niches with moderate competition, favorable financial metrics, and keyword relevance between 30% and 60% were identified, ensuring greater stability and conversion. In conclusion, this methodological framework offers a clear and strategic guide for Amazon sellers, addressing shortcomings in product and competitor evaluation, and proposes future studies with predictive tools to optimize the accuracy and scalability of keyword selection. |
| publishDate |
2025 |
| dc.date.none.fl_str_mv |
2025-09-30 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Peer Reviewed Evaluado por pares |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
https://revistas.uni.edu.pe/index.php/iecos/article/view/2598 10.21754/iecos.v26i2.2598 |
| url |
https://revistas.uni.edu.pe/index.php/iecos/article/view/2598 |
| identifier_str_mv |
10.21754/iecos.v26i2.2598 |
| dc.language.none.fl_str_mv |
spa eng |
| language |
spa eng |
| dc.relation.none.fl_str_mv |
https://revistas.uni.edu.pe/index.php/iecos/article/view/2598/3436 https://revistas.uni.edu.pe/index.php/iecos/article/view/2598/3543 https://revistas.uni.edu.pe/index.php/iecos/article/view/2598/3544 https://revistas.uni.edu.pe/index.php/iecos/article/view/2598/3545 https://revistas.uni.edu.pe/index.php/iecos/article/view/2598/3546 |
| dc.rights.none.fl_str_mv |
Derechos de autor 2025 Artem Korshun https://creativecommons.org/licenses/by/4.0 info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Derechos de autor 2025 Artem Korshun https://creativecommons.org/licenses/by/4.0 |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf text/html application/epub+zip audio/mpeg audio/mpeg |
| dc.publisher.none.fl_str_mv |
Universidad Nacional de Ingeniería |
| publisher.none.fl_str_mv |
Universidad Nacional de Ingeniería |
| dc.source.none.fl_str_mv |
revista IECOS; Vol. 26 No. 2 (2025); 132-144 Revista IECOS; Vol. 26 Núm. 2 (2025); 132-144 2788-7480 2961-2845 10.21754/iecos.v26i2 reponame:Revistas - Universidad Nacional de Ingeniería instname:Universidad Nacional de Ingeniería instacron:UNI |
| instname_str |
Universidad Nacional de Ingeniería |
| instacron_str |
UNI |
| institution |
UNI |
| reponame_str |
Revistas - Universidad Nacional de Ingeniería |
| collection |
Revistas - Universidad Nacional de Ingeniería |
| repository.name.fl_str_mv |
|
| repository.mail.fl_str_mv |
|
| _version_ |
1851319783404863488 |
| spelling |
Data-Driven Decision Making on Amazon: A Methodology for Assessing Product Potential and CompetitionToma de decisiones basada en datos en Amazon: Una metodología para evaluar el potencial de los productos y la competenciaKorshun, ArtemDecision-makingCompetenceMethodologyToma de decisionesCompetenciaMetodologíaAmazon Marketplace, especially for small and medium-sized businesses, represents a strategic tool for selecting and positioning products. While research exists on market access criteria, evaluating a product's potential and the competition requires more precise approaches. This study proposes an integrated methodological framework based on three axes: keyword relevance, market size, and level of competition, adapted to the context of sellers on Amazon. The methodology combines quantitative and qualitative techniques. Tools such as Helium 10 and Keepa are used to analyze keywords, pricing, and competitive dynamics, along with market research. Keyword frequency analysis and the identification of commercial terms allow for measuring visibility and opportunities of interest. Subsequently, financial viability is assessed by considering profit margins and inventory turnover. Keepa helps identify pricing strategies, competitor longevity, and niche sustainability, while Helium 10 detects pricing anomalies and unethical practices. The results show that the correct selection of keywords directly impacts visibility, and that accurate market size estimation reduces risks in saturated or declining niches. Niches with moderate competition, favorable financial metrics, and keyword relevance between 30% and 60% were identified, ensuring greater stability and conversion. In conclusion, this methodological framework offers a clear and strategic guide for Amazon sellers, addressing shortcomings in product and competitor evaluation, and proposes future studies with predictive tools to optimize the accuracy and scalability of keyword selection.Amazon Marketplace, especialmente para pequeñas y medianas empresas, representa una herramienta estratégica para seleccionar y posicionar productos. Aunque existen investigaciones sobre criterios de acceso al mercado, la evaluación del potencial de un producto y la competencia requiere enfoques más precisos. Este estudio propone un marco metodológico integrador basado en tres ejes: relevancia de palabras clave, tamaño del mercado y nivel de competencia, adaptados al contexto de los vendedores en Amazon. La metodología combina técnicas cuantitativas y cualitativas. Se utilizan herramientas como Helium 10 y Keepa para analizar palabras clave, precios y dinámicas competitivas, junto con estudios de mercado. El análisis de la frecuencia de palabras clave y la identificación de términos comerciales permiten medir la visibilidad y las oportunidades de interés. Posteriormente, se evalúa la viabilidad financiera considerando márgenes de beneficio y rotación de inventarios. Keepa contribuye a identificar estrategias de precios, longevidad de la competencia y sostenibilidad de nichos; mientras que Helium 10 detecta anomalías en precios y prácticas poco éticas. Los resultados muestran que la correcta selección de palabras clave impacta directamente en la visibilidad, y que la estimación adecuada del tamaño del mercado reduce riesgos en nichos saturados o en declive. Se identificaron nichos con competencia moderada, métricas financieras favorables y relevancia de palabras clave entre el 30 % y el 60 %, lo que asegura mayor estabilidad y conversión. En conclusión, este marco metodológico ofrece una guía clara y estratégica para los vendedores de Amazon, resolviendo deficiencias en la evaluación de productos y competencia, y propone estudios futuros con herramientas predictivas que optimicen la precisión y escalabilidad de la selección.Universidad Nacional de Ingeniería2025-09-30info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionPeer ReviewedEvaluado por paresapplication/pdftext/htmlapplication/epub+zipaudio/mpegaudio/mpeghttps://revistas.uni.edu.pe/index.php/iecos/article/view/259810.21754/iecos.v26i2.2598revista IECOS; Vol. 26 No. 2 (2025); 132-144Revista IECOS; Vol. 26 Núm. 2 (2025); 132-1442788-74802961-284510.21754/iecos.v26i2reponame:Revistas - Universidad Nacional de Ingenieríainstname:Universidad Nacional de Ingenieríainstacron:UNIspaenghttps://revistas.uni.edu.pe/index.php/iecos/article/view/2598/3436https://revistas.uni.edu.pe/index.php/iecos/article/view/2598/3543https://revistas.uni.edu.pe/index.php/iecos/article/view/2598/3544https://revistas.uni.edu.pe/index.php/iecos/article/view/2598/3545https://revistas.uni.edu.pe/index.php/iecos/article/view/2598/3546Derechos de autor 2025 Artem Korshunhttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessoai:oai:revistas.uni.edu.pe:article/25982025-11-30T01:30:57Z |
| score |
13.109707 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).