Modeling, analysis and seismic design of structures using energy dissipators SLB

Descripción del Articulo

This paper initially describes aspects of the modeling of structures equipped with energy dissipators Shear Link Bozzo (SLB) and develops two iterative design procedures to select these devices. This methodology is applied to a precast 5-story reinforced concrete building. The SLB energy dissipation...

Descripción completa

Detalles Bibliográficos
Autores: Bozzo, Luis, Gonzales, Helbert, Pantoja, Marcos, Muñoz, Edinson, Ramirez Machado, Junior
Formato: artículo
Fecha de Publicación:2019
Institución:Universidad Nacional de Ingeniería
Repositorio:Revistas - Universidad Nacional de Ingeniería
Lenguaje:español
OAI Identifier:oai:oai:revistas.uni.edu.pe:article/713
Enlace del recurso:https://revistas.uni.edu.pe/index.php/tecnia/article/view/713
Nivel de acceso:acceso abierto
Materia:Enlace de corte
Estructuras prefabricadas
Disipador de energía
reacondicionamiento sísmico
comportamiento histerético
Shear Link
precast structures
energy dissipators
seismic retrofit
hysteretic behaviour
id REVUNI_640cf14adebea80fabaddb96b45e48c9
oai_identifier_str oai:oai:revistas.uni.edu.pe:article/713
network_acronym_str REVUNI
network_name_str Revistas - Universidad Nacional de Ingeniería
repository_id_str
dc.title.none.fl_str_mv Modeling, analysis and seismic design of structures using energy dissipators SLB
Modelado, análisis y diseño sísmico de estructuras mediante disipadores de energía SLB
title Modeling, analysis and seismic design of structures using energy dissipators SLB
spellingShingle Modeling, analysis and seismic design of structures using energy dissipators SLB
Bozzo, Luis
Enlace de corte
Estructuras prefabricadas
Disipador de energía
reacondicionamiento sísmico
comportamiento histerético
Shear Link
precast structures
energy dissipators
seismic retrofit
hysteretic behaviour
title_short Modeling, analysis and seismic design of structures using energy dissipators SLB
title_full Modeling, analysis and seismic design of structures using energy dissipators SLB
title_fullStr Modeling, analysis and seismic design of structures using energy dissipators SLB
title_full_unstemmed Modeling, analysis and seismic design of structures using energy dissipators SLB
title_sort Modeling, analysis and seismic design of structures using energy dissipators SLB
dc.creator.none.fl_str_mv Bozzo, Luis
Gonzales, Helbert
Pantoja, Marcos
Muñoz, Edinson
Ramirez Machado, Junior
author Bozzo, Luis
author_facet Bozzo, Luis
Gonzales, Helbert
Pantoja, Marcos
Muñoz, Edinson
Ramirez Machado, Junior
author_role author
author2 Gonzales, Helbert
Pantoja, Marcos
Muñoz, Edinson
Ramirez Machado, Junior
author2_role author
author
author
author
dc.subject.none.fl_str_mv Enlace de corte
Estructuras prefabricadas
Disipador de energía
reacondicionamiento sísmico
comportamiento histerético
Shear Link
precast structures
energy dissipators
seismic retrofit
hysteretic behaviour
topic Enlace de corte
Estructuras prefabricadas
Disipador de energía
reacondicionamiento sísmico
comportamiento histerético
Shear Link
precast structures
energy dissipators
seismic retrofit
hysteretic behaviour
description This paper initially describes aspects of the modeling of structures equipped with energy dissipators Shear Link Bozzo (SLB) and develops two iterative design procedures to select these devices. This methodology is applied to a precast 5-story reinforced concrete building. The SLB energy dissipation devices are initially stiff, but ductile with a range of yielding forces from 36 kN to 900 kN characterized by 52 + 52 standard devices. Moreover, these devices can be combined in parallel giving a very wide range of possibilities for selection and corresponding structural response. Therefore, to simplify its automatic selection, this article presents two procedures: (1) direct iteration and (2) inverse or fixed force iteration. Both procedures were implemented in an automatic application or “plugin” for the ETABS program that automates its selection for a specific structural system or architectural configuration of these elements. Using these devices, the energy introduced by an earthquake into the structure can be dissipated, protecting other structural elements that suffer damage. The SLB energy dissipation devices are affordable to get a significant performance improvement in the overall structural response. This work presents a five-story precast reinforced concrete building frame, called SLB Building, that provides 4 departments per level all with a diaphanous interior floor. The building is made up of 11 columns with a constant 40x40cm section and all its beams have hinges at the ends. This building was equipped with 120 small SLB devices showing its performance for the maximum earthquake of Peruvian seismic code without ductility reduction (R = 1) by means of nonlinear time history with ten seismic records compatible with the S1 soil spectrum. In this structure, all seismic energy dissipation was concentrated in these devices so there would be no structural damage. In addition, the levels of non-structural damage were controlled with initial stiffness of these devices since lateral displacements were reduced to levels below the Peruvian seismic code (or even immediate occupancy for devices greater than those provided in this example). At the same time, the levels of acceleration decrease in height to only 0.3g and the base shear coefficient is reduced from almost 1.2 to only 0.12-0.2 (this means an R factor between 6 and 10 without structural damage).
publishDate 2019
dc.date.none.fl_str_mv 2019-08-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
TECNIA Special Issue on Earthquake Engineering
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv https://revistas.uni.edu.pe/index.php/tecnia/article/view/713
10.21754/tecnia.v29i2.713
url https://revistas.uni.edu.pe/index.php/tecnia/article/view/713
identifier_str_mv 10.21754/tecnia.v29i2.713
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv https://revistas.uni.edu.pe/index.php/tecnia/article/view/713/1113
https://revistas.uni.edu.pe/index.php/tecnia/article/view/713/1130
dc.rights.none.fl_str_mv Derechos de autor 2019 TECNIA
http://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Derechos de autor 2019 TECNIA
http://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
audio/mpeg
dc.publisher.none.fl_str_mv Universidad Nacional de Ingeniería
publisher.none.fl_str_mv Universidad Nacional de Ingeniería
dc.source.none.fl_str_mv TECNIA; Vol. 29 No. 2 (2019): Earthquake Engineering; 81.90
TECNIA; Vol. 29 Núm. 2 (2019): Ingeniería Sísmica; 81.90
2309-0413
0375-7765
reponame:Revistas - Universidad Nacional de Ingeniería
instname:Universidad Nacional de Ingeniería
instacron:UNI
instname_str Universidad Nacional de Ingeniería
instacron_str UNI
institution UNI
reponame_str Revistas - Universidad Nacional de Ingeniería
collection Revistas - Universidad Nacional de Ingeniería
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1833562779075739648
spelling Modeling, analysis and seismic design of structures using energy dissipators SLBModelado, análisis y diseño sísmico de estructuras mediante disipadores de energía SLBBozzo, LuisGonzales, HelbertPantoja, MarcosMuñoz, EdinsonRamirez Machado, JuniorEnlace de corteEstructuras prefabricadasDisipador de energíareacondicionamiento sísmicocomportamiento histeréticoShear Linkprecast structuresenergy dissipatorsseismic retrofithysteretic behaviourThis paper initially describes aspects of the modeling of structures equipped with energy dissipators Shear Link Bozzo (SLB) and develops two iterative design procedures to select these devices. This methodology is applied to a precast 5-story reinforced concrete building. The SLB energy dissipation devices are initially stiff, but ductile with a range of yielding forces from 36 kN to 900 kN characterized by 52 + 52 standard devices. Moreover, these devices can be combined in parallel giving a very wide range of possibilities for selection and corresponding structural response. Therefore, to simplify its automatic selection, this article presents two procedures: (1) direct iteration and (2) inverse or fixed force iteration. Both procedures were implemented in an automatic application or “plugin” for the ETABS program that automates its selection for a specific structural system or architectural configuration of these elements. Using these devices, the energy introduced by an earthquake into the structure can be dissipated, protecting other structural elements that suffer damage. The SLB energy dissipation devices are affordable to get a significant performance improvement in the overall structural response. This work presents a five-story precast reinforced concrete building frame, called SLB Building, that provides 4 departments per level all with a diaphanous interior floor. The building is made up of 11 columns with a constant 40x40cm section and all its beams have hinges at the ends. This building was equipped with 120 small SLB devices showing its performance for the maximum earthquake of Peruvian seismic code without ductility reduction (R = 1) by means of nonlinear time history with ten seismic records compatible with the S1 soil spectrum. In this structure, all seismic energy dissipation was concentrated in these devices so there would be no structural damage. In addition, the levels of non-structural damage were controlled with initial stiffness of these devices since lateral displacements were reduced to levels below the Peruvian seismic code (or even immediate occupancy for devices greater than those provided in this example). At the same time, the levels of acceleration decrease in height to only 0.3g and the base shear coefficient is reduced from almost 1.2 to only 0.12-0.2 (this means an R factor between 6 and 10 without structural damage).Este artículo describe inicialmente aspectos del modelado de estructuras equipadas con disipadores de energía Shear Link Bozzo (SLB) y desarrolla dos procedimientos iterativos de diseño para seleccionar estos dispositivos. Esta metodología se aplica a un edificio prefabricado de hormigón armado de 5 plantas. Los dispositivos de disipación de energía SLB son inicialmente rígidos, pero dúctiles con un rango de fuerzas de fluencia de 36 kN a 900 kN caracterizados por 52 + 52 dispositivos estándar. Además, estos dispositivos se pueden combinar en paralelo dando un rango muy amplio de posibilidades de selección y respuesta estructural correspondiente. Por lo tanto, para simplificar su selección automática, este artículo presenta dos procedimientos: (1) iteración directa y (2) iteración inversa o de fuerza fija. Ambos procedimientos se implementaron en una aplicación automática o “plugin” para el programa ETABS que automatiza su selección para un sistema estructural específico o configuración arquitectónica de estos elementos. Mediante estos dispositivos se puede disipar la energía introducida por un sismo en la estructura, protegiendo a otros elementos estructurales que sufran daños. Los dispositivos de disipación de energía SLB son asequibles para obtener una mejora significativa del rendimiento en la respuesta estructural general. Este trabajo presenta un marco de edificio de hormigón armado prefabricado de cinco pisos, denominado Edificio SLB, que proporciona 4 departamentos por nivel, todos con un piso interior diáfano. El edificio está formado por 11 pilares de sección constante 40x40cm y todas sus vigas tienen bisagras en los extremos. Este edificio fue equipado con 120 pequeños dispositivos SLB mostrando su desempeño para el sismo máximo del código sísmico peruano sin reducción de ductilidad (R = 1) mediante historia temporal no lineal con diez registros sísmicos compatibles con el espectro de suelo S1. En esta estructura, toda la disipación de energía sísmica se concentró en estos dispositivos por lo que no habría daño estructural. Además, los niveles de daño no estructural fueron controlados con la rigidez inicial de estos dispositivos ya que los desplazamientos laterales se redujeron a niveles por debajo del código sísmico peruano (o incluso ocupación inmediata para dispositivos mayores a los proporcionados en este ejemplo). Al mismo tiempo, los niveles de aceleración disminuyen en altura a solo 0,3 gy el coeficiente de cortante base se reduce de casi 1,2 a solo 0,12-0,2 (esto significa un factor R entre 6 y 10 sin daño estructural).Universidad Nacional de Ingeniería2019-08-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionTECNIA Special Issue on Earthquake Engineeringapplication/pdfaudio/mpeghttps://revistas.uni.edu.pe/index.php/tecnia/article/view/71310.21754/tecnia.v29i2.713TECNIA; Vol. 29 No. 2 (2019): Earthquake Engineering; 81.90TECNIA; Vol. 29 Núm. 2 (2019): Ingeniería Sísmica; 81.902309-04130375-7765reponame:Revistas - Universidad Nacional de Ingenieríainstname:Universidad Nacional de Ingenieríainstacron:UNIspahttps://revistas.uni.edu.pe/index.php/tecnia/article/view/713/1113https://revistas.uni.edu.pe/index.php/tecnia/article/view/713/1130Derechos de autor 2019 TECNIAhttp://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessoai:oai:revistas.uni.edu.pe:article/7132023-11-27T15:18:21Z
score 13.958958
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).