En el desafío de la predicción de la respuesta a terremotos mediante el enfoque de redes neuronales

Descripción del Articulo

Since the decade of the 1990 the neural networks algorithms have been used for compute approximate solutions for different problems in engineering. In the building behavior against loads is important to know its response. The behavior during the earthquakes and the estimation of the response is quit...

Descripción completa

Detalles Bibliográficos
Autores: Zavala Toledo, Carlos, Diaz, Miguel, Honma, Claudia
Formato: artículo
Fecha de Publicación:2023
Institución:Universidad Nacional de Ingeniería
Repositorio:Revistas - Universidad Nacional de Ingeniería
Lenguaje:español
OAI Identifier:oai:oai:revistas.uni.edu.pe:article/1434
Enlace del recurso:https://revistas.uni.edu.pe/index.php/tecnia/article/view/1434
Nivel de acceso:acceso abierto
Materia:Mampostería confinada
Redes neuronales
Respuesta de edificios
respuesta dinámica a terremotos
Confined masorny
Neural networks
Building response
Dynamic earthquake responde
Descripción
Sumario:Since the decade of the 1990 the neural networks algorithms have been used for compute approximate solutions for different problems in engineering. In the building behavior against loads is important to know its response. The behavior during the earthquakes and the estimation of the response is quite difficult to compute due to the nonlinearity of geometry and material properties. Neural networks approach is a powerful tool for computing the response of structures with an appropriate learning process from big data of structural components. Even if some material parameters are unknown, the learning on a neural network will be possible and will provide an estimation using collect information from experience and learning. To make a learning process in this paper, we present a simple algorithm of back propagation implemented in python programming language where the output shows the decrease of the error and how the response start to learn from the beginning until the end of the process. The results show good agreement between the learning data set and predicted response after the neural network learning.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).