Development of an experimental model of a solar-wind chimney for electrical supply
Descripción del Articulo
An experimental model of a wind solar chimney for electrical supply was developed, firstly, the most suitable geographic space was selected for the implementation of the model. Next, we carried out a study in order to determine the environmental, wind and solar parameters using the viewers of the Mi...
Autores: | , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2022 |
Institución: | Universidad Nacional de Ingeniería |
Repositorio: | Revistas - Universidad Nacional de Ingeniería |
Lenguaje: | español |
OAI Identifier: | oai:oai:revistas.uni.edu.pe:article/1092 |
Enlace del recurso: | https://revistas.uni.edu.pe/index.php/tecnia/article/view/1092 |
Nivel de acceso: | acceso abierto |
Materia: | Torre solar Chimenea solar Central solar-eólica Ciclo de potencia de aire Solar tower Solar Chimney Solar-Wind Power Plant Air Power Cycle |
id |
REVUNI_06f295de6d217634416c65529c40aaf7 |
---|---|
oai_identifier_str |
oai:oai:revistas.uni.edu.pe:article/1092 |
network_acronym_str |
REVUNI |
network_name_str |
Revistas - Universidad Nacional de Ingeniería |
repository_id_str |
|
dc.title.none.fl_str_mv |
Development of an experimental model of a solar-wind chimney for electrical supply Desarrollo de un modelo experimental de una chimenea solar-eólica para suministro eléctrico |
title |
Development of an experimental model of a solar-wind chimney for electrical supply |
spellingShingle |
Development of an experimental model of a solar-wind chimney for electrical supply Velazco Lorenzo, Dinau Torre solar Chimenea solar Central solar-eólica Ciclo de potencia de aire Solar tower Solar Chimney Solar-Wind Power Plant Air Power Cycle |
title_short |
Development of an experimental model of a solar-wind chimney for electrical supply |
title_full |
Development of an experimental model of a solar-wind chimney for electrical supply |
title_fullStr |
Development of an experimental model of a solar-wind chimney for electrical supply |
title_full_unstemmed |
Development of an experimental model of a solar-wind chimney for electrical supply |
title_sort |
Development of an experimental model of a solar-wind chimney for electrical supply |
dc.creator.none.fl_str_mv |
Velazco Lorenzo, Dinau Butler Blacker, Jorge Gustavo |
author |
Velazco Lorenzo, Dinau |
author_facet |
Velazco Lorenzo, Dinau Butler Blacker, Jorge Gustavo |
author_role |
author |
author2 |
Butler Blacker, Jorge Gustavo |
author2_role |
author |
dc.subject.none.fl_str_mv |
Torre solar Chimenea solar Central solar-eólica Ciclo de potencia de aire Solar tower Solar Chimney Solar-Wind Power Plant Air Power Cycle |
topic |
Torre solar Chimenea solar Central solar-eólica Ciclo de potencia de aire Solar tower Solar Chimney Solar-Wind Power Plant Air Power Cycle |
description |
An experimental model of a wind solar chimney for electrical supply was developed, firstly, the most suitable geographic space was selected for the implementation of the model. Next, we carried out a study in order to determine the environmental, wind and solar parameters using the viewers of the Ministry of Energy and Mines; Taking renewable energy resources as a starting point, a pre-dimensioning was established in order to guarantee economic and technical viability to be able to build the model.The theory of similarity was applied to define the preliminary geometry of the chimney considering built plants as referents, marking the difference of adding two additional subsystems, one wind and the other photovoltaic in order to give it greater autonomy; the wind subsystem located in the upper part of the chimney and the photovoltaic subsystem along the outer surface of the chimney collector and in the central part. Thermal fluid modeling was carried out in the collector considering the differential control volume applying the Reynolds transport equations, mass, moment, energy using Bousnik approximations in order to be able to determine the evolution of pressure, density and temperature working with a simplified model. of heat input in the collector, taking into account the radiation per square meter instantaneous in the place. Then the simulation was carried out in Matlab and satisfactory results of the model were obtained, with respect to the wind and photovoltaic subsystems, the simulations were developed to guarantee the energy contribution. The chimney components began to be designed considering the ease of transport, assembly handling, drawing the plans considering structural strength parameters, the anchoring component and the first chimney body; the number of bodies was established to achieve the design height. The collector was articulated to the first body of the chimney through 12 sectors which were built with structural T and with the design slope, to later cover it with standard transparent plastic number 12 and glue it to the collector. At the same time, the wind subsystem was designed, consisting of two wind turbines with an aerodynamic fuselage, blades with a NACA 624 profile. The foundation of the anchor was made and later the installation of all the bodies in which speed, temperature and humidity sensors of the chimney were installed considering wind turbines. Then the centralized system of accumulation, regulation and monitoring in the form of a column outside the collector was installed and the tests were carried out. The objective of developing the self-sufficient integral model was met considering 3 supply subsystems, in the collector temperature gradients were obtained significant, but according to the research schedule, the test dates corresponded to the month of August, where there is not a high level of radiation, which was expected from the beginning of the project, this did not generate a sufficient gradient for the operation of the thermal turbine. The photovoltaic and wind subsystems worked as expected in the experimentation area. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-06-30 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
https://revistas.uni.edu.pe/index.php/tecnia/article/view/1092 10.21754/tecnia.v32i1.1092 |
url |
https://revistas.uni.edu.pe/index.php/tecnia/article/view/1092 |
identifier_str_mv |
10.21754/tecnia.v32i1.1092 |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.relation.none.fl_str_mv |
https://revistas.uni.edu.pe/index.php/tecnia/article/view/1092/1910 |
dc.rights.none.fl_str_mv |
Derechos de autor 2022 TECNIA http://creativecommons.org/licenses/by/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Derechos de autor 2022 TECNIA http://creativecommons.org/licenses/by/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidad Nacional de Ingeniería |
publisher.none.fl_str_mv |
Universidad Nacional de Ingeniería |
dc.source.none.fl_str_mv |
TECNIA; Vol. 32 No. 1 (2022); 13-27 TECNIA; Vol. 32 Núm. 1 (2022); 13-27 2309-0413 0375-7765 10.21754/tecnia.v32i1 reponame:Revistas - Universidad Nacional de Ingeniería instname:Universidad Nacional de Ingeniería instacron:UNI |
instname_str |
Universidad Nacional de Ingeniería |
instacron_str |
UNI |
institution |
UNI |
reponame_str |
Revistas - Universidad Nacional de Ingeniería |
collection |
Revistas - Universidad Nacional de Ingeniería |
repository.name.fl_str_mv |
|
repository.mail.fl_str_mv |
|
_version_ |
1838636205525172224 |
spelling |
Development of an experimental model of a solar-wind chimney for electrical supplyDesarrollo de un modelo experimental de una chimenea solar-eólica para suministro eléctricoVelazco Lorenzo, DinauButler Blacker, Jorge GustavoTorre solarChimenea solarCentral solar-eólicaCiclo de potencia de aireSolar towerSolar ChimneySolar-Wind Power PlantAir Power CycleAn experimental model of a wind solar chimney for electrical supply was developed, firstly, the most suitable geographic space was selected for the implementation of the model. Next, we carried out a study in order to determine the environmental, wind and solar parameters using the viewers of the Ministry of Energy and Mines; Taking renewable energy resources as a starting point, a pre-dimensioning was established in order to guarantee economic and technical viability to be able to build the model.The theory of similarity was applied to define the preliminary geometry of the chimney considering built plants as referents, marking the difference of adding two additional subsystems, one wind and the other photovoltaic in order to give it greater autonomy; the wind subsystem located in the upper part of the chimney and the photovoltaic subsystem along the outer surface of the chimney collector and in the central part. Thermal fluid modeling was carried out in the collector considering the differential control volume applying the Reynolds transport equations, mass, moment, energy using Bousnik approximations in order to be able to determine the evolution of pressure, density and temperature working with a simplified model. of heat input in the collector, taking into account the radiation per square meter instantaneous in the place. Then the simulation was carried out in Matlab and satisfactory results of the model were obtained, with respect to the wind and photovoltaic subsystems, the simulations were developed to guarantee the energy contribution. The chimney components began to be designed considering the ease of transport, assembly handling, drawing the plans considering structural strength parameters, the anchoring component and the first chimney body; the number of bodies was established to achieve the design height. The collector was articulated to the first body of the chimney through 12 sectors which were built with structural T and with the design slope, to later cover it with standard transparent plastic number 12 and glue it to the collector. At the same time, the wind subsystem was designed, consisting of two wind turbines with an aerodynamic fuselage, blades with a NACA 624 profile. The foundation of the anchor was made and later the installation of all the bodies in which speed, temperature and humidity sensors of the chimney were installed considering wind turbines. Then the centralized system of accumulation, regulation and monitoring in the form of a column outside the collector was installed and the tests were carried out. The objective of developing the self-sufficient integral model was met considering 3 supply subsystems, in the collector temperature gradients were obtained significant, but according to the research schedule, the test dates corresponded to the month of August, where there is not a high level of radiation, which was expected from the beginning of the project, this did not generate a sufficient gradient for the operation of the thermal turbine. The photovoltaic and wind subsystems worked as expected in the experimentation area.Se desarrolló un modelo experimental de una chimenea solar eólica para suministro eléctrico, primeramente, se seleccionó el espacio geográfico más adecuado para la implantación del modelo. A continuación, realizamos un estudió a fin de determinar los parámetros ambientales, eólicos, solares usando los visores del Ministerio de Energía y minas; teniendo como punto de partida los recursos energéticos renovables se estableció un pre dimensionamiento a fin de garantizar viabilidad económica, técnica para poder construir el modelo. Se aplicó la teoría de similitud para definir la geometría preliminar de la chimenea considerando como referentes plantas construidas, marcando la diferencia de agregar dos subsistemas adicionales uno eólico y otro fotovoltaico a fin de darle mayor autonomía; el subsistema eólico ubicado en la parte superior de la chimenea y el subsistema fotovoltaico a lo largo de la superficie exterior del colector de chimenea y en la parte central. Se realizó el modelamiento fluido térmico en el colector considerando el volumen de control diferencial aplicando las ecuaciones de transporte de Reynolds, masa, momento, energía usando aproximaciones Bousnik a fin de poder determinar la evolución de la presión, densidad y temperatura trabajando con un modelo simplificado de aporte de calor en el colector, teniendo en cuenta la radiación por metro cuadrado instantánea en el lugar. Luego se realizó la simulación en Matlab y se obtuvieron resultados satisfactorios del modelo, con respecto a los subsistemas eólicos y fotovoltaicas se desarrollaron las simulaciones para garantizar el aporte de energía. Se empezó a diseñar los componentes de la chimenea considerando la facilidad de transporte, manipulación ensamble, dibujando los planos considerando parámetros estructurales de resistencia, el componente de anclaje y primer cuerpo de la chimenea; se establecieron el número de cuerpos para lograr la altura de diseño. El colector se articuló al primer cuerpo de la chimenea mediante 12 sectores los cuales fueron construidos con T estructurales y con la pendiente de diseño, para posteriormente cubrirlo con plástico transparente estándar número 12 y pegarlo al colector. Paralelamente se diseñó el subsistema eólico conformado por dos eólicas con fuselaje aerodinámico, aspas con perfil NACA 624. Se realizó la cimentación del anclaje y posteriormente la instalación de todos los cuerpos en los que se instaló sensores de velocidad, temperatura y humedad de la chimenea considerando los aerogeneradores. Luego se instaló el sistema centralizado de acumulación, regulación y monitoreo en forma de columna fuera del colector y se procedió a los ensayos .Se cumplió el objetivo de desarrollar el modelo integral autosuficiente considerando 3 subsistemas de aporte, en el colector se obtuvieron gradientes de temperatura significativos, pero de acuerdo al cronograma de investigación las fechas de ensayo correspondió al mes agosto, donde no se tiene un alto nivel de radiación lo cual estaba previsto desde el inicio del proyecto ello no generó suficiente gradiente para el funcionamiento de la turbina térmica. Los subsistemas fotovoltaicos y eólicos trabajaron de acuerdo a lo esperado en la zona de experimentación.Universidad Nacional de Ingeniería2022-06-30info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://revistas.uni.edu.pe/index.php/tecnia/article/view/109210.21754/tecnia.v32i1.1092TECNIA; Vol. 32 No. 1 (2022); 13-27TECNIA; Vol. 32 Núm. 1 (2022); 13-272309-04130375-776510.21754/tecnia.v32i1reponame:Revistas - Universidad Nacional de Ingenieríainstname:Universidad Nacional de Ingenieríainstacron:UNIspahttps://revistas.uni.edu.pe/index.php/tecnia/article/view/1092/1910Derechos de autor 2022 TECNIAhttp://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessoai:oai:revistas.uni.edu.pe:article/10922025-07-15T00:10:25Z |
score |
13.749494 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).