Ratio of varieties by actions of reductive groups

Descripción del Articulo

We consider the ring of polynomials R = K[x1, dots, xn] in the variables x1, dots, xn and complex coefficients. The permutation group of 1, dots, n acts sore R by permuting the variables. The set of invariants by this action forms a ring generated by elementary symmetric polynomials. Emmy Noether pr...

Descripción completa

Detalles Bibliográficos
Autor: Medina García, Nélida
Formato: artículo
Fecha de Publicación:2017
Institución:Universidad Nacional de Trujillo
Repositorio:Revistas - Universidad Nacional de Trujillo
Lenguaje:español
OAI Identifier:oai:ojs.revistas.unitru.edu.pe:article/1421
Enlace del recurso:https://revistas.unitru.edu.pe/index.php/SSMM/article/view/1421
Nivel de acceso:acceso abierto
Materia:Varieties
small groups
variedades
grupos reducidos
id REVUNITRU_fe123f6e2009cb40fdcb3ba6040fa44c
oai_identifier_str oai:ojs.revistas.unitru.edu.pe:article/1421
network_acronym_str REVUNITRU
network_name_str Revistas - Universidad Nacional de Trujillo
repository_id_str
spelling Ratio of varieties by actions of reductive groupsCocientes de variedades por acciones de grupos reductivosMedina García, NélidaVarietiessmall groupsvariedadesgrupos reducidosWe consider the ring of polynomials R = K[x1, dots, xn] in the variables x1, dots, xn and complex coefficients. The permutation group of 1, dots, n acts sore R by permuting the variables. The set of invariants by this action forms a ring generated by elementary symmetric polynomials. Emmy Noether proves that if a finite group of inverse matrices G subsetGL(n; k) acts on R, then the ring of invariants is generated by a finite number of invariant homogeneous and defines an operator in G to obtain invariant polynomials. There are algebraic relationships between the generators of the invariant ring and the orbits of Cn/G. In 1963, Masayoshi Nagata demonstrated that the ring of the invariants of geomagically reductive groups is finitely generated. We analice the existence of a quotient variety X/G where G is an algebraic group acting on an algebraic variety X.Consideramos el anillo de polinomios R = K[x1, . . . , xn] en las variables x1, . . . , xn y coeficientes complejos. El grupo de permutaciones de 1, . . . , n actúa sore R permutando las variables. El conjunto de invariantes por esta acción forma un anillo generado por los polinomios simétricos elementales. Emmy Noether prueba que si un grupo finito de matrices inversibles G ⊂ GL(n; k) actúa sobre R, entonces el anillo de invariantes es generado por un número finito de invariantes homogéneos y define un operador en G para obtener polinomios invariantes. Existen relaciones algebraicas entre los generadores del anillo de invariantes y las órbitas de Cn/G. En 1963, Masayoshi Nagata demostró que el anillo de los invariantes de los grupos geométricamente reductivos es finitamente generado. Analizamos la existencia de una variedad cociente X/G donde G es un grupo algebraico actuando sobre una variedad algebraica X.National University of Trujillo - Academic Department of Mathematics2017-07-13info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlapplication/pdfhttps://revistas.unitru.edu.pe/index.php/SSMM/article/view/1421Selecciones Matemáticas; Vol. 4 No. 01 (2017): January - July; 25-29Selecciones Matemáticas; Vol. 4 Núm. 01 (2017): Enero - Julio; 25-29Selecciones Matemáticas; v. 4 n. 01 (2017): Enero - Julio; 25-292411-1783reponame:Revistas - Universidad Nacional de Trujilloinstname:Universidad Nacional de Trujilloinstacron:UNITRUspahttps://revistas.unitru.edu.pe/index.php/SSMM/article/view/1421/2297https://revistas.unitru.edu.pe/index.php/SSMM/article/view/1421/2307Derechos de autor 2017 Selecciones Matemáticasinfo:eu-repo/semantics/openAccessoai:ojs.revistas.unitru.edu.pe:article/14212022-10-21T18:54:40Z
dc.title.none.fl_str_mv Ratio of varieties by actions of reductive groups
Cocientes de variedades por acciones de grupos reductivos
title Ratio of varieties by actions of reductive groups
spellingShingle Ratio of varieties by actions of reductive groups
Medina García, Nélida
Varieties
small groups
variedades
grupos reducidos
title_short Ratio of varieties by actions of reductive groups
title_full Ratio of varieties by actions of reductive groups
title_fullStr Ratio of varieties by actions of reductive groups
title_full_unstemmed Ratio of varieties by actions of reductive groups
title_sort Ratio of varieties by actions of reductive groups
dc.creator.none.fl_str_mv Medina García, Nélida
author Medina García, Nélida
author_facet Medina García, Nélida
author_role author
dc.subject.none.fl_str_mv Varieties
small groups
variedades
grupos reducidos
topic Varieties
small groups
variedades
grupos reducidos
description We consider the ring of polynomials R = K[x1, dots, xn] in the variables x1, dots, xn and complex coefficients. The permutation group of 1, dots, n acts sore R by permuting the variables. The set of invariants by this action forms a ring generated by elementary symmetric polynomials. Emmy Noether proves that if a finite group of inverse matrices G subsetGL(n; k) acts on R, then the ring of invariants is generated by a finite number of invariant homogeneous and defines an operator in G to obtain invariant polynomials. There are algebraic relationships between the generators of the invariant ring and the orbits of Cn/G. In 1963, Masayoshi Nagata demonstrated that the ring of the invariants of geomagically reductive groups is finitely generated. We analice the existence of a quotient variety X/G where G is an algebraic group acting on an algebraic variety X.
publishDate 2017
dc.date.none.fl_str_mv 2017-07-13
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv https://revistas.unitru.edu.pe/index.php/SSMM/article/view/1421
url https://revistas.unitru.edu.pe/index.php/SSMM/article/view/1421
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv https://revistas.unitru.edu.pe/index.php/SSMM/article/view/1421/2297
https://revistas.unitru.edu.pe/index.php/SSMM/article/view/1421/2307
dc.rights.none.fl_str_mv Derechos de autor 2017 Selecciones Matemáticas
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Derechos de autor 2017 Selecciones Matemáticas
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
application/pdf
dc.publisher.none.fl_str_mv National University of Trujillo - Academic Department of Mathematics
publisher.none.fl_str_mv National University of Trujillo - Academic Department of Mathematics
dc.source.none.fl_str_mv Selecciones Matemáticas; Vol. 4 No. 01 (2017): January - July; 25-29
Selecciones Matemáticas; Vol. 4 Núm. 01 (2017): Enero - Julio; 25-29
Selecciones Matemáticas; v. 4 n. 01 (2017): Enero - Julio; 25-29
2411-1783
reponame:Revistas - Universidad Nacional de Trujillo
instname:Universidad Nacional de Trujillo
instacron:UNITRU
instname_str Universidad Nacional de Trujillo
instacron_str UNITRU
institution UNITRU
reponame_str Revistas - Universidad Nacional de Trujillo
collection Revistas - Universidad Nacional de Trujillo
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1843350201143656448
score 13.210282
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).