Ratio of varieties by actions of reductive groups

Descripción del Articulo

We consider the ring of polynomials R = K[x1, dots, xn] in the variables x1, dots, xn and complex coefficients. The permutation group of 1, dots, n acts sore R by permuting the variables. The set of invariants by this action forms a ring generated by elementary symmetric polynomials. Emmy Noether pr...

Descripción completa

Detalles Bibliográficos
Autor: Medina García, Nélida
Formato: artículo
Fecha de Publicación:2017
Institución:Universidad Nacional de Trujillo
Repositorio:Revistas - Universidad Nacional de Trujillo
Lenguaje:español
OAI Identifier:oai:ojs.revistas.unitru.edu.pe:article/1421
Enlace del recurso:https://revistas.unitru.edu.pe/index.php/SSMM/article/view/1421
Nivel de acceso:acceso abierto
Materia:Varieties
small groups
variedades
grupos reducidos
Descripción
Sumario:We consider the ring of polynomials R = K[x1, dots, xn] in the variables x1, dots, xn and complex coefficients. The permutation group of 1, dots, n acts sore R by permuting the variables. The set of invariants by this action forms a ring generated by elementary symmetric polynomials. Emmy Noether proves that if a finite group of inverse matrices G subsetGL(n; k) acts on R, then the ring of invariants is generated by a finite number of invariant homogeneous and defines an operator in G to obtain invariant polynomials. There are algebraic relationships between the generators of the invariant ring and the orbits of Cn/G. In 1963, Masayoshi Nagata demonstrated that the ring of the invariants of geomagically reductive groups is finitely generated. We analice the existence of a quotient variety X/G where G is an algebraic group acting on an algebraic variety X.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).