The region of the unit Euclidean sphere that admits a class of (r,s)-linear Weingarten hypersurfaces

Descripción del Articulo

In the unit Euclidean sphere Sn+1, we deal with a class of hypersurfaces that were characterized in [23] as the critical points of a variational problem, the so-called (r, s)-linear Weingarten hypersurfaces (0 ≤ r ≤s ≤ n−1); namely, the hypersurfaces of Sn+1 that has a linear combination arHr+1+・ ・...

Descripción completa

Detalles Bibliográficos
Autor: Lázaro Velásquez, Marco Antonio
Formato: artículo
Fecha de Publicación:2023
Institución:Universidad Nacional de Trujillo
Repositorio:Revistas - Universidad Nacional de Trujillo
Lenguaje:inglés
OAI Identifier:oai:ojs.revistas.unitru.edu.pe:article/5682
Enlace del recurso:https://revistas.unitru.edu.pe/index.php/SSMM/article/view/5682
Nivel de acceso:acceso abierto
Materia:unit Euclidean space
(r, s)-linear Weingarten hypersurfaces
upper (lower) domain enclosed by the geodesic sphere of unit Euclidean space of level τ0
strong stability
geodesic spheres
id REVUNITRU_f55b7b30b30cd720baba53874cb8b7cd
oai_identifier_str oai:ojs.revistas.unitru.edu.pe:article/5682
network_acronym_str REVUNITRU
network_name_str Revistas - Universidad Nacional de Trujillo
repository_id_str
spelling The region of the unit Euclidean sphere that admits a class of (r,s)-linear Weingarten hypersurfacesLázaro Velásquez, Marco Antoniounit Euclidean space(r, s)-linear Weingarten hypersurfacesupper (lower) domain enclosed by the geodesic sphere of unit Euclidean space of level τ0strong stabilitygeodesic spheresIn the unit Euclidean sphere Sn+1, we deal with a class of hypersurfaces that were characterized in [23] as the critical points of a variational problem, the so-called (r, s)-linear Weingarten hypersurfaces (0 ≤ r ≤s ≤ n−1); namely, the hypersurfaces of Sn+1 that has a linear combination arHr+1+・ ・ ・+asHs+1 of their higher order mean curvatures Hr+1 and Hs+1 being a real constant, where ar, . . . , ar are nonnegative real numbers (with at least one non zero). By assuming a geometric constraint involving the higher order mean curvatures of these hypersurfaces, we prove a uniqueness result for strongly stable (r, s)-linear Weingarten hypersurfaces immersed in a certain region determined by a geodesic sphere of Sn+1. We also establish a nonexistence result in another region of Sn+1 for strongly stable Weingarten (r, s)-linear hypersurfaces.National University of Trujillo - Academic Department of Mathematics2023-12-27info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://revistas.unitru.edu.pe/index.php/SSMM/article/view/5682Selecciones Matemáticas; Vol. 10 No. 02 (2023): August - December; 285 - 298Selecciones Matemáticas; Vol. 10 Núm. 02 (2023): Agosto - Diciembre; 285 - 298Selecciones Matemáticas; v. 10 n. 02 (2023): Agosto - Dezembro; 285 - 2982411-1783reponame:Revistas - Universidad Nacional de Trujilloinstname:Universidad Nacional de Trujilloinstacron:UNITRUenghttps://revistas.unitru.edu.pe/index.php/SSMM/article/view/5682/5793Derechos de autor 2023 Selecciones Matemáticashttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessoai:ojs.revistas.unitru.edu.pe:article/56822023-12-27T14:40:03Z
dc.title.none.fl_str_mv The region of the unit Euclidean sphere that admits a class of (r,s)-linear Weingarten hypersurfaces
title The region of the unit Euclidean sphere that admits a class of (r,s)-linear Weingarten hypersurfaces
spellingShingle The region of the unit Euclidean sphere that admits a class of (r,s)-linear Weingarten hypersurfaces
Lázaro Velásquez, Marco Antonio
unit Euclidean space
(r, s)-linear Weingarten hypersurfaces
upper (lower) domain enclosed by the geodesic sphere of unit Euclidean space of level τ0
strong stability
geodesic spheres
title_short The region of the unit Euclidean sphere that admits a class of (r,s)-linear Weingarten hypersurfaces
title_full The region of the unit Euclidean sphere that admits a class of (r,s)-linear Weingarten hypersurfaces
title_fullStr The region of the unit Euclidean sphere that admits a class of (r,s)-linear Weingarten hypersurfaces
title_full_unstemmed The region of the unit Euclidean sphere that admits a class of (r,s)-linear Weingarten hypersurfaces
title_sort The region of the unit Euclidean sphere that admits a class of (r,s)-linear Weingarten hypersurfaces
dc.creator.none.fl_str_mv Lázaro Velásquez, Marco Antonio
author Lázaro Velásquez, Marco Antonio
author_facet Lázaro Velásquez, Marco Antonio
author_role author
dc.subject.none.fl_str_mv unit Euclidean space
(r, s)-linear Weingarten hypersurfaces
upper (lower) domain enclosed by the geodesic sphere of unit Euclidean space of level τ0
strong stability
geodesic spheres
topic unit Euclidean space
(r, s)-linear Weingarten hypersurfaces
upper (lower) domain enclosed by the geodesic sphere of unit Euclidean space of level τ0
strong stability
geodesic spheres
description In the unit Euclidean sphere Sn+1, we deal with a class of hypersurfaces that were characterized in [23] as the critical points of a variational problem, the so-called (r, s)-linear Weingarten hypersurfaces (0 ≤ r ≤s ≤ n−1); namely, the hypersurfaces of Sn+1 that has a linear combination arHr+1+・ ・ ・+asHs+1 of their higher order mean curvatures Hr+1 and Hs+1 being a real constant, where ar, . . . , ar are nonnegative real numbers (with at least one non zero). By assuming a geometric constraint involving the higher order mean curvatures of these hypersurfaces, we prove a uniqueness result for strongly stable (r, s)-linear Weingarten hypersurfaces immersed in a certain region determined by a geodesic sphere of Sn+1. We also establish a nonexistence result in another region of Sn+1 for strongly stable Weingarten (r, s)-linear hypersurfaces.
publishDate 2023
dc.date.none.fl_str_mv 2023-12-27
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv https://revistas.unitru.edu.pe/index.php/SSMM/article/view/5682
url https://revistas.unitru.edu.pe/index.php/SSMM/article/view/5682
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://revistas.unitru.edu.pe/index.php/SSMM/article/view/5682/5793
dc.rights.none.fl_str_mv Derechos de autor 2023 Selecciones Matemáticas
https://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Derechos de autor 2023 Selecciones Matemáticas
https://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv National University of Trujillo - Academic Department of Mathematics
publisher.none.fl_str_mv National University of Trujillo - Academic Department of Mathematics
dc.source.none.fl_str_mv Selecciones Matemáticas; Vol. 10 No. 02 (2023): August - December; 285 - 298
Selecciones Matemáticas; Vol. 10 Núm. 02 (2023): Agosto - Diciembre; 285 - 298
Selecciones Matemáticas; v. 10 n. 02 (2023): Agosto - Dezembro; 285 - 298
2411-1783
reponame:Revistas - Universidad Nacional de Trujillo
instname:Universidad Nacional de Trujillo
instacron:UNITRU
instname_str Universidad Nacional de Trujillo
instacron_str UNITRU
institution UNITRU
reponame_str Revistas - Universidad Nacional de Trujillo
collection Revistas - Universidad Nacional de Trujillo
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1843350210450817024
score 13.261649
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).