The region of the unit Euclidean sphere that admits a class of (r,s)-linear Weingarten hypersurfaces
Descripción del Articulo
In the unit Euclidean sphere Sn+1, we deal with a class of hypersurfaces that were characterized in [23] as the critical points of a variational problem, the so-called (r, s)-linear Weingarten hypersurfaces (0 ≤ r ≤s ≤ n−1); namely, the hypersurfaces of Sn+1 that has a linear combination arHr+1+・ ・...
| Autor: | |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2023 |
| Institución: | Universidad Nacional de Trujillo |
| Repositorio: | Revistas - Universidad Nacional de Trujillo |
| Lenguaje: | inglés |
| OAI Identifier: | oai:ojs.revistas.unitru.edu.pe:article/5682 |
| Enlace del recurso: | https://revistas.unitru.edu.pe/index.php/SSMM/article/view/5682 |
| Nivel de acceso: | acceso abierto |
| Materia: | unit Euclidean space (r, s)-linear Weingarten hypersurfaces upper (lower) domain enclosed by the geodesic sphere of unit Euclidean space of level τ0 strong stability geodesic spheres |
| id |
REVUNITRU_f55b7b30b30cd720baba53874cb8b7cd |
|---|---|
| oai_identifier_str |
oai:ojs.revistas.unitru.edu.pe:article/5682 |
| network_acronym_str |
REVUNITRU |
| network_name_str |
Revistas - Universidad Nacional de Trujillo |
| repository_id_str |
|
| spelling |
The region of the unit Euclidean sphere that admits a class of (r,s)-linear Weingarten hypersurfacesLázaro Velásquez, Marco Antoniounit Euclidean space(r, s)-linear Weingarten hypersurfacesupper (lower) domain enclosed by the geodesic sphere of unit Euclidean space of level τ0strong stabilitygeodesic spheresIn the unit Euclidean sphere Sn+1, we deal with a class of hypersurfaces that were characterized in [23] as the critical points of a variational problem, the so-called (r, s)-linear Weingarten hypersurfaces (0 ≤ r ≤s ≤ n−1); namely, the hypersurfaces of Sn+1 that has a linear combination arHr+1+・ ・ ・+asHs+1 of their higher order mean curvatures Hr+1 and Hs+1 being a real constant, where ar, . . . , ar are nonnegative real numbers (with at least one non zero). By assuming a geometric constraint involving the higher order mean curvatures of these hypersurfaces, we prove a uniqueness result for strongly stable (r, s)-linear Weingarten hypersurfaces immersed in a certain region determined by a geodesic sphere of Sn+1. We also establish a nonexistence result in another region of Sn+1 for strongly stable Weingarten (r, s)-linear hypersurfaces.National University of Trujillo - Academic Department of Mathematics2023-12-27info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://revistas.unitru.edu.pe/index.php/SSMM/article/view/5682Selecciones Matemáticas; Vol. 10 No. 02 (2023): August - December; 285 - 298Selecciones Matemáticas; Vol. 10 Núm. 02 (2023): Agosto - Diciembre; 285 - 298Selecciones Matemáticas; v. 10 n. 02 (2023): Agosto - Dezembro; 285 - 2982411-1783reponame:Revistas - Universidad Nacional de Trujilloinstname:Universidad Nacional de Trujilloinstacron:UNITRUenghttps://revistas.unitru.edu.pe/index.php/SSMM/article/view/5682/5793Derechos de autor 2023 Selecciones Matemáticashttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessoai:ojs.revistas.unitru.edu.pe:article/56822023-12-27T14:40:03Z |
| dc.title.none.fl_str_mv |
The region of the unit Euclidean sphere that admits a class of (r,s)-linear Weingarten hypersurfaces |
| title |
The region of the unit Euclidean sphere that admits a class of (r,s)-linear Weingarten hypersurfaces |
| spellingShingle |
The region of the unit Euclidean sphere that admits a class of (r,s)-linear Weingarten hypersurfaces Lázaro Velásquez, Marco Antonio unit Euclidean space (r, s)-linear Weingarten hypersurfaces upper (lower) domain enclosed by the geodesic sphere of unit Euclidean space of level τ0 strong stability geodesic spheres |
| title_short |
The region of the unit Euclidean sphere that admits a class of (r,s)-linear Weingarten hypersurfaces |
| title_full |
The region of the unit Euclidean sphere that admits a class of (r,s)-linear Weingarten hypersurfaces |
| title_fullStr |
The region of the unit Euclidean sphere that admits a class of (r,s)-linear Weingarten hypersurfaces |
| title_full_unstemmed |
The region of the unit Euclidean sphere that admits a class of (r,s)-linear Weingarten hypersurfaces |
| title_sort |
The region of the unit Euclidean sphere that admits a class of (r,s)-linear Weingarten hypersurfaces |
| dc.creator.none.fl_str_mv |
Lázaro Velásquez, Marco Antonio |
| author |
Lázaro Velásquez, Marco Antonio |
| author_facet |
Lázaro Velásquez, Marco Antonio |
| author_role |
author |
| dc.subject.none.fl_str_mv |
unit Euclidean space (r, s)-linear Weingarten hypersurfaces upper (lower) domain enclosed by the geodesic sphere of unit Euclidean space of level τ0 strong stability geodesic spheres |
| topic |
unit Euclidean space (r, s)-linear Weingarten hypersurfaces upper (lower) domain enclosed by the geodesic sphere of unit Euclidean space of level τ0 strong stability geodesic spheres |
| description |
In the unit Euclidean sphere Sn+1, we deal with a class of hypersurfaces that were characterized in [23] as the critical points of a variational problem, the so-called (r, s)-linear Weingarten hypersurfaces (0 ≤ r ≤s ≤ n−1); namely, the hypersurfaces of Sn+1 that has a linear combination arHr+1+・ ・ ・+asHs+1 of their higher order mean curvatures Hr+1 and Hs+1 being a real constant, where ar, . . . , ar are nonnegative real numbers (with at least one non zero). By assuming a geometric constraint involving the higher order mean curvatures of these hypersurfaces, we prove a uniqueness result for strongly stable (r, s)-linear Weingarten hypersurfaces immersed in a certain region determined by a geodesic sphere of Sn+1. We also establish a nonexistence result in another region of Sn+1 for strongly stable Weingarten (r, s)-linear hypersurfaces. |
| publishDate |
2023 |
| dc.date.none.fl_str_mv |
2023-12-27 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
https://revistas.unitru.edu.pe/index.php/SSMM/article/view/5682 |
| url |
https://revistas.unitru.edu.pe/index.php/SSMM/article/view/5682 |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
https://revistas.unitru.edu.pe/index.php/SSMM/article/view/5682/5793 |
| dc.rights.none.fl_str_mv |
Derechos de autor 2023 Selecciones Matemáticas https://creativecommons.org/licenses/by/4.0 info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Derechos de autor 2023 Selecciones Matemáticas https://creativecommons.org/licenses/by/4.0 |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
National University of Trujillo - Academic Department of Mathematics |
| publisher.none.fl_str_mv |
National University of Trujillo - Academic Department of Mathematics |
| dc.source.none.fl_str_mv |
Selecciones Matemáticas; Vol. 10 No. 02 (2023): August - December; 285 - 298 Selecciones Matemáticas; Vol. 10 Núm. 02 (2023): Agosto - Diciembre; 285 - 298 Selecciones Matemáticas; v. 10 n. 02 (2023): Agosto - Dezembro; 285 - 298 2411-1783 reponame:Revistas - Universidad Nacional de Trujillo instname:Universidad Nacional de Trujillo instacron:UNITRU |
| instname_str |
Universidad Nacional de Trujillo |
| instacron_str |
UNITRU |
| institution |
UNITRU |
| reponame_str |
Revistas - Universidad Nacional de Trujillo |
| collection |
Revistas - Universidad Nacional de Trujillo |
| repository.name.fl_str_mv |
|
| repository.mail.fl_str_mv |
|
| _version_ |
1852228732886974464 |
| score |
13.121117 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).