The region of the unit Euclidean sphere that admits a class of (r,s)-linear Weingarten hypersurfaces
Descripción del Articulo
In the unit Euclidean sphere Sn+1, we deal with a class of hypersurfaces that were characterized in [23] as the critical points of a variational problem, the so-called (r, s)-linear Weingarten hypersurfaces (0 ≤ r ≤s ≤ n−1); namely, the hypersurfaces of Sn+1 that has a linear combination arHr+1+・ ・...
Autor: | |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2023 |
Institución: | Universidad Nacional de Trujillo |
Repositorio: | Revistas - Universidad Nacional de Trujillo |
Lenguaje: | inglés |
OAI Identifier: | oai:ojs.revistas.unitru.edu.pe:article/5682 |
Enlace del recurso: | https://revistas.unitru.edu.pe/index.php/SSMM/article/view/5682 |
Nivel de acceso: | acceso abierto |
Materia: | unit Euclidean space (r, s)-linear Weingarten hypersurfaces upper (lower) domain enclosed by the geodesic sphere of unit Euclidean space of level τ0 strong stability geodesic spheres |
id |
REVUNITRU_f55b7b30b30cd720baba53874cb8b7cd |
---|---|
oai_identifier_str |
oai:ojs.revistas.unitru.edu.pe:article/5682 |
network_acronym_str |
REVUNITRU |
network_name_str |
Revistas - Universidad Nacional de Trujillo |
repository_id_str |
|
spelling |
The region of the unit Euclidean sphere that admits a class of (r,s)-linear Weingarten hypersurfacesLázaro Velásquez, Marco Antoniounit Euclidean space(r, s)-linear Weingarten hypersurfacesupper (lower) domain enclosed by the geodesic sphere of unit Euclidean space of level τ0strong stabilitygeodesic spheresIn the unit Euclidean sphere Sn+1, we deal with a class of hypersurfaces that were characterized in [23] as the critical points of a variational problem, the so-called (r, s)-linear Weingarten hypersurfaces (0 ≤ r ≤s ≤ n−1); namely, the hypersurfaces of Sn+1 that has a linear combination arHr+1+・ ・ ・+asHs+1 of their higher order mean curvatures Hr+1 and Hs+1 being a real constant, where ar, . . . , ar are nonnegative real numbers (with at least one non zero). By assuming a geometric constraint involving the higher order mean curvatures of these hypersurfaces, we prove a uniqueness result for strongly stable (r, s)-linear Weingarten hypersurfaces immersed in a certain region determined by a geodesic sphere of Sn+1. We also establish a nonexistence result in another region of Sn+1 for strongly stable Weingarten (r, s)-linear hypersurfaces.National University of Trujillo - Academic Department of Mathematics2023-12-27info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://revistas.unitru.edu.pe/index.php/SSMM/article/view/5682Selecciones Matemáticas; Vol. 10 No. 02 (2023): August - December; 285 - 298Selecciones Matemáticas; Vol. 10 Núm. 02 (2023): Agosto - Diciembre; 285 - 298Selecciones Matemáticas; v. 10 n. 02 (2023): Agosto - Dezembro; 285 - 2982411-1783reponame:Revistas - Universidad Nacional de Trujilloinstname:Universidad Nacional de Trujilloinstacron:UNITRUenghttps://revistas.unitru.edu.pe/index.php/SSMM/article/view/5682/5793Derechos de autor 2023 Selecciones Matemáticashttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessoai:ojs.revistas.unitru.edu.pe:article/56822023-12-27T14:40:03Z |
dc.title.none.fl_str_mv |
The region of the unit Euclidean sphere that admits a class of (r,s)-linear Weingarten hypersurfaces |
title |
The region of the unit Euclidean sphere that admits a class of (r,s)-linear Weingarten hypersurfaces |
spellingShingle |
The region of the unit Euclidean sphere that admits a class of (r,s)-linear Weingarten hypersurfaces Lázaro Velásquez, Marco Antonio unit Euclidean space (r, s)-linear Weingarten hypersurfaces upper (lower) domain enclosed by the geodesic sphere of unit Euclidean space of level τ0 strong stability geodesic spheres |
title_short |
The region of the unit Euclidean sphere that admits a class of (r,s)-linear Weingarten hypersurfaces |
title_full |
The region of the unit Euclidean sphere that admits a class of (r,s)-linear Weingarten hypersurfaces |
title_fullStr |
The region of the unit Euclidean sphere that admits a class of (r,s)-linear Weingarten hypersurfaces |
title_full_unstemmed |
The region of the unit Euclidean sphere that admits a class of (r,s)-linear Weingarten hypersurfaces |
title_sort |
The region of the unit Euclidean sphere that admits a class of (r,s)-linear Weingarten hypersurfaces |
dc.creator.none.fl_str_mv |
Lázaro Velásquez, Marco Antonio |
author |
Lázaro Velásquez, Marco Antonio |
author_facet |
Lázaro Velásquez, Marco Antonio |
author_role |
author |
dc.subject.none.fl_str_mv |
unit Euclidean space (r, s)-linear Weingarten hypersurfaces upper (lower) domain enclosed by the geodesic sphere of unit Euclidean space of level τ0 strong stability geodesic spheres |
topic |
unit Euclidean space (r, s)-linear Weingarten hypersurfaces upper (lower) domain enclosed by the geodesic sphere of unit Euclidean space of level τ0 strong stability geodesic spheres |
description |
In the unit Euclidean sphere Sn+1, we deal with a class of hypersurfaces that were characterized in [23] as the critical points of a variational problem, the so-called (r, s)-linear Weingarten hypersurfaces (0 ≤ r ≤s ≤ n−1); namely, the hypersurfaces of Sn+1 that has a linear combination arHr+1+・ ・ ・+asHs+1 of their higher order mean curvatures Hr+1 and Hs+1 being a real constant, where ar, . . . , ar are nonnegative real numbers (with at least one non zero). By assuming a geometric constraint involving the higher order mean curvatures of these hypersurfaces, we prove a uniqueness result for strongly stable (r, s)-linear Weingarten hypersurfaces immersed in a certain region determined by a geodesic sphere of Sn+1. We also establish a nonexistence result in another region of Sn+1 for strongly stable Weingarten (r, s)-linear hypersurfaces. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-12-27 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
https://revistas.unitru.edu.pe/index.php/SSMM/article/view/5682 |
url |
https://revistas.unitru.edu.pe/index.php/SSMM/article/view/5682 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
https://revistas.unitru.edu.pe/index.php/SSMM/article/view/5682/5793 |
dc.rights.none.fl_str_mv |
Derechos de autor 2023 Selecciones Matemáticas https://creativecommons.org/licenses/by/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Derechos de autor 2023 Selecciones Matemáticas https://creativecommons.org/licenses/by/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
National University of Trujillo - Academic Department of Mathematics |
publisher.none.fl_str_mv |
National University of Trujillo - Academic Department of Mathematics |
dc.source.none.fl_str_mv |
Selecciones Matemáticas; Vol. 10 No. 02 (2023): August - December; 285 - 298 Selecciones Matemáticas; Vol. 10 Núm. 02 (2023): Agosto - Diciembre; 285 - 298 Selecciones Matemáticas; v. 10 n. 02 (2023): Agosto - Dezembro; 285 - 298 2411-1783 reponame:Revistas - Universidad Nacional de Trujillo instname:Universidad Nacional de Trujillo instacron:UNITRU |
instname_str |
Universidad Nacional de Trujillo |
instacron_str |
UNITRU |
institution |
UNITRU |
reponame_str |
Revistas - Universidad Nacional de Trujillo |
collection |
Revistas - Universidad Nacional de Trujillo |
repository.name.fl_str_mv |
|
repository.mail.fl_str_mv |
|
_version_ |
1843350210450817024 |
score |
13.261649 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).