On the index of stability of (r, s)-linear Weingarten Clifford tori
Descripción del Articulo
For entire numbers r and s satisfying 0 ≤ r ≤ s ≤ n − 2, we showed that the index of (r, s)-stability of a (r, s)-linear Weingarten Clifford torus immersed into the (n + 1)-dimensional unit Euclidean sphere, that has a linear combination of their higher order mean curvatures Hr+1 and Hs+1 being null...
Autor: | |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2023 |
Institución: | Universidad Nacional de Trujillo |
Repositorio: | Revistas - Universidad Nacional de Trujillo |
Lenguaje: | inglés |
OAI Identifier: | oai:ojs.revistas.unitru.edu.pe:article/5009 |
Enlace del recurso: | https://revistas.unitru.edu.pe/index.php/SSMM/article/view/5009 |
Nivel de acceso: | acceso abierto |
Materia: | Unit Euclidean sphere higher order mean curvatures (r, s)-linear Weingarten Clifford torus Jacobi operator index of (r, s)-stability |
Sumario: | For entire numbers r and s satisfying 0 ≤ r ≤ s ≤ n − 2, we showed that the index of (r, s)-stability of a (r, s)-linear Weingarten Clifford torus immersed into the (n + 1)-dimensional unit Euclidean sphere, that has a linear combination of their higher order mean curvatures Hr+1 and Hs+1 being null, is exactly equal to n + 3 provided that a geometric condition involving Hr+2 and Hs+2 is satisfied. |
---|
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).