Balancing accuracy, interpretability, and stability in machine-learning models: Live-weight prediction of Andean sheep from morphometric traits
Descripción del Articulo
The objective of this research was to predict the live weight of Corriedale lambs using morphological measurements and machine learning algorithms. A total of 291 five-month-old lambs from the Corpacancha Production Unit of SAIS PACHACÚTEC SAC were used. These animals represented a homogeneous group...
Autores: | , , , , , , , , , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2025 |
Institución: | Universidad Nacional de Trujillo |
Repositorio: | Revistas - Universidad Nacional de Trujillo |
Lenguaje: | inglés español |
OAI Identifier: | oai:ojs.revistas.unitru.edu.pe:article/6221 |
Enlace del recurso: | https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/6221 |
Nivel de acceso: | acceso abierto |
Materia: | biometrics predictive models mathematical models young sheep zoometrical |
id |
REVUNITRU_ee6ead3d98fcf894d223f7fce6aec7f4 |
---|---|
oai_identifier_str |
oai:ojs.revistas.unitru.edu.pe:article/6221 |
network_acronym_str |
REVUNITRU |
network_name_str |
Revistas - Universidad Nacional de Trujillo |
repository_id_str |
|
spelling |
Balancing accuracy, interpretability, and stability in machine-learning models: Live-weight prediction of Andean sheep from morphometric traitsNinahuanca Carhuas, Jordan Garcia-Olarte, EdgarUnchupaico Payano, IdeSarapura, VickyZenteno Vera, KevinQuispe Eulogio, CarlosAncco Gomez, EdithM. Hadi, Mohamed MohamedMiranda-Torpoco, CarolinaGuerra Condor, Wilhelmbiometricspredictive modelsmathematical modelsyoung sheepzoometricalThe objective of this research was to predict the live weight of Corriedale lambs using morphological measurements and machine learning algorithms. A total of 291 five-month-old lambs from the Corpacancha Production Unit of SAIS PACHACÚTEC SAC were used. These animals represented a homogeneous group in terms of age, sex, and genetics, as they belonged to the Corriedale breed and were offspring of "Category A" ewes. Morphological measurements recorded included Body Length (BL), Withers Height (WH), Thoracic Girth (TG), Rump Width (RW), Abdominal Girth (AG), Cannon Bone Length (CBL), Chest Depth (CD), and Live Weight (LW). The models evaluated were Multiple Linear Regression, Ridge Regression, Decision Trees, Random Forest, and XGBoost. The comparative analysis of the machine learning models identified ModG and Ridge as the most accurate and stable options, standing out for their low Mean Squared Error (MSE = 0.083) and Root Mean Squared Error (RMSE ≈ 0.287 – 0.288). Additionally, they exhibited the highest coefficients of determination (R2 = 0.89, RAdj2 = 0.88), indicating excellent predictive capability and data fit. Their low coefficient of variation (CV%) confirms their stability, establishing them as the best choices for applications where precision is paramount, such as predicting critical values in production processes and high-demand scientific studies. While XGBoost proved to be a robust alternative with an MSE of 0.119, an RMSE of 0.345, and a relative error of 2.22%. These findings confirm that prioritizing models that balance accuracy, interpretability, and stability enable faster, data-driven decision-making in Corriedale sheep production. Such an approach optimizes feed allocation, classifies lambs by market weight, and promptly detects growth deviations, thereby improving overall flock profitability.Universidad Nacional de Trujillo2025-08-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdftext/htmlimage/pnghttps://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/6221Scientia Agropecuaria; Vol. 16 Núm. 4 (2025): Octubre-Diciembre; 487-498Scientia Agropecuaria; Vol. 16 No. 4 (2025): Octubre-Diciembre; 487-4982306-67412077-9917reponame:Revistas - Universidad Nacional de Trujilloinstname:Universidad Nacional de Trujilloinstacron:UNITRUengspahttps://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/6221/6894https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/6221/6918https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/6221/6942Derechos de autor 2025 Scientia Agropecuariahttps://creativecommons.org/licenses/by-nc/4.0info:eu-repo/semantics/openAccessoai:ojs.revistas.unitru.edu.pe:article/62212025-08-08T18:31:48Z |
dc.title.none.fl_str_mv |
Balancing accuracy, interpretability, and stability in machine-learning models: Live-weight prediction of Andean sheep from morphometric traits |
title |
Balancing accuracy, interpretability, and stability in machine-learning models: Live-weight prediction of Andean sheep from morphometric traits |
spellingShingle |
Balancing accuracy, interpretability, and stability in machine-learning models: Live-weight prediction of Andean sheep from morphometric traits Ninahuanca Carhuas, Jordan biometrics predictive models mathematical models young sheep zoometrical |
title_short |
Balancing accuracy, interpretability, and stability in machine-learning models: Live-weight prediction of Andean sheep from morphometric traits |
title_full |
Balancing accuracy, interpretability, and stability in machine-learning models: Live-weight prediction of Andean sheep from morphometric traits |
title_fullStr |
Balancing accuracy, interpretability, and stability in machine-learning models: Live-weight prediction of Andean sheep from morphometric traits |
title_full_unstemmed |
Balancing accuracy, interpretability, and stability in machine-learning models: Live-weight prediction of Andean sheep from morphometric traits |
title_sort |
Balancing accuracy, interpretability, and stability in machine-learning models: Live-weight prediction of Andean sheep from morphometric traits |
dc.creator.none.fl_str_mv |
Ninahuanca Carhuas, Jordan Garcia-Olarte, Edgar Unchupaico Payano, Ide Sarapura, Vicky Zenteno Vera, Kevin Quispe Eulogio, Carlos Ancco Gomez, Edith M. Hadi, Mohamed Mohamed Miranda-Torpoco, Carolina Guerra Condor, Wilhelm |
author |
Ninahuanca Carhuas, Jordan |
author_facet |
Ninahuanca Carhuas, Jordan Garcia-Olarte, Edgar Unchupaico Payano, Ide Sarapura, Vicky Zenteno Vera, Kevin Quispe Eulogio, Carlos Ancco Gomez, Edith M. Hadi, Mohamed Mohamed Miranda-Torpoco, Carolina Guerra Condor, Wilhelm |
author_role |
author |
author2 |
Garcia-Olarte, Edgar Unchupaico Payano, Ide Sarapura, Vicky Zenteno Vera, Kevin Quispe Eulogio, Carlos Ancco Gomez, Edith M. Hadi, Mohamed Mohamed Miranda-Torpoco, Carolina Guerra Condor, Wilhelm |
author2_role |
author author author author author author author author author |
dc.subject.none.fl_str_mv |
biometrics predictive models mathematical models young sheep zoometrical |
topic |
biometrics predictive models mathematical models young sheep zoometrical |
description |
The objective of this research was to predict the live weight of Corriedale lambs using morphological measurements and machine learning algorithms. A total of 291 five-month-old lambs from the Corpacancha Production Unit of SAIS PACHACÚTEC SAC were used. These animals represented a homogeneous group in terms of age, sex, and genetics, as they belonged to the Corriedale breed and were offspring of "Category A" ewes. Morphological measurements recorded included Body Length (BL), Withers Height (WH), Thoracic Girth (TG), Rump Width (RW), Abdominal Girth (AG), Cannon Bone Length (CBL), Chest Depth (CD), and Live Weight (LW). The models evaluated were Multiple Linear Regression, Ridge Regression, Decision Trees, Random Forest, and XGBoost. The comparative analysis of the machine learning models identified ModG and Ridge as the most accurate and stable options, standing out for their low Mean Squared Error (MSE = 0.083) and Root Mean Squared Error (RMSE ≈ 0.287 – 0.288). Additionally, they exhibited the highest coefficients of determination (R2 = 0.89, RAdj2 = 0.88), indicating excellent predictive capability and data fit. Their low coefficient of variation (CV%) confirms their stability, establishing them as the best choices for applications where precision is paramount, such as predicting critical values in production processes and high-demand scientific studies. While XGBoost proved to be a robust alternative with an MSE of 0.119, an RMSE of 0.345, and a relative error of 2.22%. These findings confirm that prioritizing models that balance accuracy, interpretability, and stability enable faster, data-driven decision-making in Corriedale sheep production. Such an approach optimizes feed allocation, classifies lambs by market weight, and promptly detects growth deviations, thereby improving overall flock profitability. |
publishDate |
2025 |
dc.date.none.fl_str_mv |
2025-08-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/6221 |
url |
https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/6221 |
dc.language.none.fl_str_mv |
eng spa |
language |
eng spa |
dc.relation.none.fl_str_mv |
https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/6221/6894 https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/6221/6918 https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/6221/6942 |
dc.rights.none.fl_str_mv |
Derechos de autor 2025 Scientia Agropecuaria https://creativecommons.org/licenses/by-nc/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Derechos de autor 2025 Scientia Agropecuaria https://creativecommons.org/licenses/by-nc/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf text/html image/png |
dc.publisher.none.fl_str_mv |
Universidad Nacional de Trujillo |
publisher.none.fl_str_mv |
Universidad Nacional de Trujillo |
dc.source.none.fl_str_mv |
Scientia Agropecuaria; Vol. 16 Núm. 4 (2025): Octubre-Diciembre; 487-498 Scientia Agropecuaria; Vol. 16 No. 4 (2025): Octubre-Diciembre; 487-498 2306-6741 2077-9917 reponame:Revistas - Universidad Nacional de Trujillo instname:Universidad Nacional de Trujillo instacron:UNITRU |
instname_str |
Universidad Nacional de Trujillo |
instacron_str |
UNITRU |
institution |
UNITRU |
reponame_str |
Revistas - Universidad Nacional de Trujillo |
collection |
Revistas - Universidad Nacional de Trujillo |
repository.name.fl_str_mv |
|
repository.mail.fl_str_mv |
|
_version_ |
1841449094454706176 |
score |
13.949927 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).