Balancing accuracy, interpretability, and stability in machine-learning models: Live-weight prediction of Andean sheep from morphometric traits

Descripción del Articulo

The objective of this research was to predict the live weight of Corriedale lambs using morphological measurements and machine learning algorithms. A total of 291 five-month-old lambs from the Corpacancha Production Unit of SAIS PACHACÚTEC SAC were used. These animals represented a homogeneous group...

Descripción completa

Detalles Bibliográficos
Autores: Ninahuanca Carhuas, Jordan, Garcia-Olarte, Edgar, Unchupaico Payano, Ide, Sarapura, Vicky, Zenteno Vera, Kevin, Quispe Eulogio, Carlos, Ancco Gomez, Edith, M. Hadi, Mohamed Mohamed, Miranda-Torpoco, Carolina, Guerra Condor, Wilhelm
Formato: artículo
Fecha de Publicación:2025
Institución:Universidad Nacional de Trujillo
Repositorio:Revistas - Universidad Nacional de Trujillo
Lenguaje:inglés
español
OAI Identifier:oai:ojs.revistas.unitru.edu.pe:article/6221
Enlace del recurso:https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/6221
Nivel de acceso:acceso abierto
Materia:biometrics
predictive models
mathematical models
young sheep
zoometrical
id REVUNITRU_ee6ead3d98fcf894d223f7fce6aec7f4
oai_identifier_str oai:ojs.revistas.unitru.edu.pe:article/6221
network_acronym_str REVUNITRU
network_name_str Revistas - Universidad Nacional de Trujillo
repository_id_str
spelling Balancing accuracy, interpretability, and stability in machine-learning models: Live-weight prediction of Andean sheep from morphometric traitsNinahuanca Carhuas, Jordan Garcia-Olarte, EdgarUnchupaico Payano, IdeSarapura, VickyZenteno Vera, KevinQuispe Eulogio, CarlosAncco Gomez, EdithM. Hadi, Mohamed MohamedMiranda-Torpoco, CarolinaGuerra Condor, Wilhelmbiometricspredictive modelsmathematical modelsyoung sheepzoometricalThe objective of this research was to predict the live weight of Corriedale lambs using morphological measurements and machine learning algorithms. A total of 291 five-month-old lambs from the Corpacancha Production Unit of SAIS PACHACÚTEC SAC were used. These animals represented a homogeneous group in terms of age, sex, and genetics, as they belonged to the Corriedale breed and were offspring of "Category A" ewes. Morphological measurements recorded included Body Length (BL), Withers Height (WH), Thoracic Girth (TG), Rump Width (RW), Abdominal Girth (AG), Cannon Bone Length (CBL), Chest Depth (CD), and Live Weight (LW). The models evaluated were Multiple Linear Regression, Ridge Regression, Decision Trees, Random Forest, and XGBoost. The comparative analysis of the machine learning models identified ModG and Ridge as the most accurate and stable options, standing out for their low Mean Squared Error (MSE = 0.083) and Root Mean Squared Error (RMSE ≈ 0.287 – 0.288). Additionally, they exhibited the highest coefficients of determination (R2 = 0.89, RAdj2 = 0.88), indicating excellent predictive capability and data fit. Their low coefficient of variation (CV%) confirms their stability, establishing them as the best choices for applications where precision is paramount, such as predicting critical values in production processes and high-demand scientific studies. While XGBoost proved to be a robust alternative with an MSE of 0.119, an RMSE of 0.345, and a relative error of 2.22%. These findings confirm that prioritizing models that balance accuracy, interpretability, and stability enable faster, data-driven decision-making in Corriedale sheep production. Such an approach optimizes feed allocation, classifies lambs by market weight, and promptly detects growth deviations, thereby improving overall flock profitability.Universidad Nacional de Trujillo2025-08-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdftext/htmlimage/pnghttps://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/6221Scientia Agropecuaria; Vol. 16 Núm. 4 (2025): Octubre-Diciembre; 487-498Scientia Agropecuaria; Vol. 16 No. 4 (2025): Octubre-Diciembre; 487-4982306-67412077-9917reponame:Revistas - Universidad Nacional de Trujilloinstname:Universidad Nacional de Trujilloinstacron:UNITRUengspahttps://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/6221/6894https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/6221/6918https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/6221/6942Derechos de autor 2025 Scientia Agropecuariahttps://creativecommons.org/licenses/by-nc/4.0info:eu-repo/semantics/openAccessoai:ojs.revistas.unitru.edu.pe:article/62212025-08-08T18:31:48Z
dc.title.none.fl_str_mv Balancing accuracy, interpretability, and stability in machine-learning models: Live-weight prediction of Andean sheep from morphometric traits
title Balancing accuracy, interpretability, and stability in machine-learning models: Live-weight prediction of Andean sheep from morphometric traits
spellingShingle Balancing accuracy, interpretability, and stability in machine-learning models: Live-weight prediction of Andean sheep from morphometric traits
Ninahuanca Carhuas, Jordan
biometrics
predictive models
mathematical models
young sheep
zoometrical
title_short Balancing accuracy, interpretability, and stability in machine-learning models: Live-weight prediction of Andean sheep from morphometric traits
title_full Balancing accuracy, interpretability, and stability in machine-learning models: Live-weight prediction of Andean sheep from morphometric traits
title_fullStr Balancing accuracy, interpretability, and stability in machine-learning models: Live-weight prediction of Andean sheep from morphometric traits
title_full_unstemmed Balancing accuracy, interpretability, and stability in machine-learning models: Live-weight prediction of Andean sheep from morphometric traits
title_sort Balancing accuracy, interpretability, and stability in machine-learning models: Live-weight prediction of Andean sheep from morphometric traits
dc.creator.none.fl_str_mv Ninahuanca Carhuas, Jordan
Garcia-Olarte, Edgar
Unchupaico Payano, Ide
Sarapura, Vicky
Zenteno Vera, Kevin
Quispe Eulogio, Carlos
Ancco Gomez, Edith
M. Hadi, Mohamed Mohamed
Miranda-Torpoco, Carolina
Guerra Condor, Wilhelm
author Ninahuanca Carhuas, Jordan
author_facet Ninahuanca Carhuas, Jordan
Garcia-Olarte, Edgar
Unchupaico Payano, Ide
Sarapura, Vicky
Zenteno Vera, Kevin
Quispe Eulogio, Carlos
Ancco Gomez, Edith
M. Hadi, Mohamed Mohamed
Miranda-Torpoco, Carolina
Guerra Condor, Wilhelm
author_role author
author2 Garcia-Olarte, Edgar
Unchupaico Payano, Ide
Sarapura, Vicky
Zenteno Vera, Kevin
Quispe Eulogio, Carlos
Ancco Gomez, Edith
M. Hadi, Mohamed Mohamed
Miranda-Torpoco, Carolina
Guerra Condor, Wilhelm
author2_role author
author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv biometrics
predictive models
mathematical models
young sheep
zoometrical
topic biometrics
predictive models
mathematical models
young sheep
zoometrical
description The objective of this research was to predict the live weight of Corriedale lambs using morphological measurements and machine learning algorithms. A total of 291 five-month-old lambs from the Corpacancha Production Unit of SAIS PACHACÚTEC SAC were used. These animals represented a homogeneous group in terms of age, sex, and genetics, as they belonged to the Corriedale breed and were offspring of "Category A" ewes. Morphological measurements recorded included Body Length (BL), Withers Height (WH), Thoracic Girth (TG), Rump Width (RW), Abdominal Girth (AG), Cannon Bone Length (CBL), Chest Depth (CD), and Live Weight (LW). The models evaluated were Multiple Linear Regression, Ridge Regression, Decision Trees, Random Forest, and XGBoost. The comparative analysis of the machine learning models identified ModG and Ridge as the most accurate and stable options, standing out for their low Mean Squared Error (MSE = 0.083) and Root Mean Squared Error (RMSE ≈ 0.287 – 0.288). Additionally, they exhibited the highest coefficients of determination (R2 = 0.89, RAdj2 = 0.88), indicating excellent predictive capability and data fit. Their low coefficient of variation (CV%) confirms their stability, establishing them as the best choices for applications where precision is paramount, such as predicting critical values in production processes and high-demand scientific studies. While XGBoost proved to be a robust alternative with an MSE of 0.119, an RMSE of 0.345, and a relative error of 2.22%. These findings confirm that prioritizing models that balance accuracy, interpretability, and stability enable faster, data-driven decision-making in Corriedale sheep production. Such an approach optimizes feed allocation, classifies lambs by market weight, and promptly detects growth deviations, thereby improving overall flock profitability.
publishDate 2025
dc.date.none.fl_str_mv 2025-08-08
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/6221
url https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/6221
dc.language.none.fl_str_mv eng
spa
language eng
spa
dc.relation.none.fl_str_mv https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/6221/6894
https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/6221/6918
https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/6221/6942
dc.rights.none.fl_str_mv Derechos de autor 2025 Scientia Agropecuaria
https://creativecommons.org/licenses/by-nc/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Derechos de autor 2025 Scientia Agropecuaria
https://creativecommons.org/licenses/by-nc/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
text/html
image/png
dc.publisher.none.fl_str_mv Universidad Nacional de Trujillo
publisher.none.fl_str_mv Universidad Nacional de Trujillo
dc.source.none.fl_str_mv Scientia Agropecuaria; Vol. 16 Núm. 4 (2025): Octubre-Diciembre; 487-498
Scientia Agropecuaria; Vol. 16 No. 4 (2025): Octubre-Diciembre; 487-498
2306-6741
2077-9917
reponame:Revistas - Universidad Nacional de Trujillo
instname:Universidad Nacional de Trujillo
instacron:UNITRU
instname_str Universidad Nacional de Trujillo
instacron_str UNITRU
institution UNITRU
reponame_str Revistas - Universidad Nacional de Trujillo
collection Revistas - Universidad Nacional de Trujillo
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1841449094454706176
score 13.949927
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).