Tangential intersection curves of two surfaces in the three-dimensional Lorentz-Minkowski space
Descripción del Articulo
We present algorithms for computing the differential geometry properties of tangential intersection curves of two surfaces in the three-dimensional Lorentz-Minkowski space E31 . We compute the tangent vector of tangential intersection curves of two surfaces parametric, where the surfaces can be: spa...
| Autores: | , |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2025 |
| Institución: | Universidad Nacional de Trujillo |
| Repositorio: | Revistas - Universidad Nacional de Trujillo |
| Lenguaje: | inglés |
| OAI Identifier: | oai:ojs.revistas.unitru.edu.pe:article/6625 |
| Enlace del recurso: | https://revistas.unitru.edu.pe/index.php/SSMM/article/view/6625 |
| Nivel de acceso: | acceso abierto |
| Materia: | Euler Rodrigues formula Tangential Intersection Lorentz Minkowski space Surface-surface intersection Fórmula Euler Rodrigues Intersección Tangencial Espacio Lorentz Minkowski Intersección Superficie-superficie |
| id |
REVUNITRU_e7ce0d2483a5c6d063af8554fd060714 |
|---|---|
| oai_identifier_str |
oai:ojs.revistas.unitru.edu.pe:article/6625 |
| network_acronym_str |
REVUNITRU |
| network_name_str |
Revistas - Universidad Nacional de Trujillo |
| repository_id_str |
|
| spelling |
Tangential intersection curves of two surfaces in the three-dimensional Lorentz-Minkowski spaceTangential intersection curves of two surfaces in the three-dimensional Lorentz-Minkowski spaceTangential intersection curves of two surfaces in the three-dimensional Lorentz-Minkowski spaceAlessio, OsmarRamos Cintra Neto, Luiz AugustoEuler Rodrigues formulaTangential IntersectionLorentz Minkowski spaceSurface-surface intersectionFórmula Euler RodriguesIntersección TangencialEspacio Lorentz MinkowskiIntersección Superficie-superficieEuler Rodrigues formulaTangential IntersectionLorentz Minkowski spaceSurface-surface intersectionWe present algorithms for computing the differential geometry properties of tangential intersection curves of two surfaces in the three-dimensional Lorentz-Minkowski space E31 . We compute the tangent vector of tangential intersection curves of two surfaces parametric, where the surfaces can be: spacelike, timelike, or lightlike. The first method computed the tangent vector using the equality of the projection of the second derivative vector onto the normal vector and second method computes the tangent vector by applying a rotation to a vector projected onto the tangent space, where the axis of rotation is the normal vector of the surface. In Minkowski space, there are three types of rotations, since the normal vectors can be: spacelike, lightlike, or timelike.Presentamos algoritmos para calcular las propiedades de la geometría diferencial de las curvas de intersección tangencial de dos superficies en el espacio de Lorentz-Minkowski tridimensional E31. Calculamos el vector tangente de las curvas de intersección tangencial de dos superficies paramétricas, donde las superficies pueden ser: espaciales (spacelike), temporales (timelike) o isotrópicas (lightlike). El primer método calcula el vector tangente utilizando la igualdad de la proyección del vector derivada segunda sobre el vector normal. El segundo método calcula el vector tangente aplicando una rotación a un vector proyectado sobre el espacio tangente, donde el eje de rotación es el vector normal de la superficie. En el espacio de Minkowski, existen tres tipos de rotaciones, ya que los vectores normales pueden ser: espaciales, isotrópicos o temporales.We present algorithms for computing the differential geometry properties of tangential intersection curves of two surfaces in the three-dimensional Lorentz-Minkowski space E31 . We compute the tangent vector of tangential intersection curves of two surfaces parametric, where the surfaces can be: spacelike, timelike, or lightlike. The first method computed the tangent vector using the equality of the projection of the second derivative vector onto the normal vector and second method computes the tangent vector by applying a rotation to a vector projected onto the tangent space, where the axis of rotation is the normal vector of the surface. In Minkowski space, there are three types of rotations, since the normal vectors can be: spacelike, lightlike, or timelike.National University of Trujillo - Academic Department of Mathematics2025-07-26info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://revistas.unitru.edu.pe/index.php/SSMM/article/view/6625Selecciones Matemáticas; Vol. 12 No. 01 (2025): January - July; 97 - 122Selecciones Matemáticas; Vol. 12 Núm. 01 (2025): Enero - Julio; 97 - 122Selecciones Matemáticas; v. 12 n. 01 (2025): Janeiro - Julho; 97 - 1222411-1783reponame:Revistas - Universidad Nacional de Trujilloinstname:Universidad Nacional de Trujilloinstacron:UNITRUenghttps://revistas.unitru.edu.pe/index.php/SSMM/article/view/6625/6859https://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessoai:ojs.revistas.unitru.edu.pe:article/66252025-07-26T15:43:48Z |
| dc.title.none.fl_str_mv |
Tangential intersection curves of two surfaces in the three-dimensional Lorentz-Minkowski space Tangential intersection curves of two surfaces in the three-dimensional Lorentz-Minkowski space Tangential intersection curves of two surfaces in the three-dimensional Lorentz-Minkowski space |
| title |
Tangential intersection curves of two surfaces in the three-dimensional Lorentz-Minkowski space |
| spellingShingle |
Tangential intersection curves of two surfaces in the three-dimensional Lorentz-Minkowski space Alessio, Osmar Euler Rodrigues formula Tangential Intersection Lorentz Minkowski space Surface-surface intersection Fórmula Euler Rodrigues Intersección Tangencial Espacio Lorentz Minkowski Intersección Superficie-superficie Euler Rodrigues formula Tangential Intersection Lorentz Minkowski space Surface-surface intersection |
| title_short |
Tangential intersection curves of two surfaces in the three-dimensional Lorentz-Minkowski space |
| title_full |
Tangential intersection curves of two surfaces in the three-dimensional Lorentz-Minkowski space |
| title_fullStr |
Tangential intersection curves of two surfaces in the three-dimensional Lorentz-Minkowski space |
| title_full_unstemmed |
Tangential intersection curves of two surfaces in the three-dimensional Lorentz-Minkowski space |
| title_sort |
Tangential intersection curves of two surfaces in the three-dimensional Lorentz-Minkowski space |
| dc.creator.none.fl_str_mv |
Alessio, Osmar Ramos Cintra Neto, Luiz Augusto |
| author |
Alessio, Osmar |
| author_facet |
Alessio, Osmar Ramos Cintra Neto, Luiz Augusto |
| author_role |
author |
| author2 |
Ramos Cintra Neto, Luiz Augusto |
| author2_role |
author |
| dc.subject.none.fl_str_mv |
Euler Rodrigues formula Tangential Intersection Lorentz Minkowski space Surface-surface intersection Fórmula Euler Rodrigues Intersección Tangencial Espacio Lorentz Minkowski Intersección Superficie-superficie Euler Rodrigues formula Tangential Intersection Lorentz Minkowski space Surface-surface intersection |
| topic |
Euler Rodrigues formula Tangential Intersection Lorentz Minkowski space Surface-surface intersection Fórmula Euler Rodrigues Intersección Tangencial Espacio Lorentz Minkowski Intersección Superficie-superficie Euler Rodrigues formula Tangential Intersection Lorentz Minkowski space Surface-surface intersection |
| description |
We present algorithms for computing the differential geometry properties of tangential intersection curves of two surfaces in the three-dimensional Lorentz-Minkowski space E31 . We compute the tangent vector of tangential intersection curves of two surfaces parametric, where the surfaces can be: spacelike, timelike, or lightlike. The first method computed the tangent vector using the equality of the projection of the second derivative vector onto the normal vector and second method computes the tangent vector by applying a rotation to a vector projected onto the tangent space, where the axis of rotation is the normal vector of the surface. In Minkowski space, there are three types of rotations, since the normal vectors can be: spacelike, lightlike, or timelike. |
| publishDate |
2025 |
| dc.date.none.fl_str_mv |
2025-07-26 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
https://revistas.unitru.edu.pe/index.php/SSMM/article/view/6625 |
| url |
https://revistas.unitru.edu.pe/index.php/SSMM/article/view/6625 |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
https://revistas.unitru.edu.pe/index.php/SSMM/article/view/6625/6859 |
| dc.rights.none.fl_str_mv |
https://creativecommons.org/licenses/by/4.0 info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by/4.0 |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
National University of Trujillo - Academic Department of Mathematics |
| publisher.none.fl_str_mv |
National University of Trujillo - Academic Department of Mathematics |
| dc.source.none.fl_str_mv |
Selecciones Matemáticas; Vol. 12 No. 01 (2025): January - July; 97 - 122 Selecciones Matemáticas; Vol. 12 Núm. 01 (2025): Enero - Julio; 97 - 122 Selecciones Matemáticas; v. 12 n. 01 (2025): Janeiro - Julho; 97 - 122 2411-1783 reponame:Revistas - Universidad Nacional de Trujillo instname:Universidad Nacional de Trujillo instacron:UNITRU |
| instname_str |
Universidad Nacional de Trujillo |
| instacron_str |
UNITRU |
| institution |
UNITRU |
| reponame_str |
Revistas - Universidad Nacional de Trujillo |
| collection |
Revistas - Universidad Nacional de Trujillo |
| repository.name.fl_str_mv |
|
| repository.mail.fl_str_mv |
|
| _version_ |
1846521102938931200 |
| score |
13.413352 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).