Tangential intersection curves of two surfaces in the three-dimensional Lorentz-Minkowski space

Descripción del Articulo

We present algorithms for computing the differential geometry properties of tangential intersection curves of two surfaces in the three-dimensional Lorentz-Minkowski space E31 . We compute the tangent vector of tangential intersection curves of two surfaces parametric, where the surfaces can be: spa...

Descripción completa

Detalles Bibliográficos
Autores: Alessio, Osmar, Ramos Cintra Neto, Luiz Augusto
Formato: artículo
Fecha de Publicación:2025
Institución:Universidad Nacional de Trujillo
Repositorio:Revistas - Universidad Nacional de Trujillo
Lenguaje:inglés
OAI Identifier:oai:ojs.revistas.unitru.edu.pe:article/6625
Enlace del recurso:https://revistas.unitru.edu.pe/index.php/SSMM/article/view/6625
Nivel de acceso:acceso abierto
Materia:Euler Rodrigues formula
Tangential Intersection
Lorentz Minkowski space
Surface-surface intersection
Fórmula Euler Rodrigues
Intersección Tangencial
Espacio Lorentz Minkowski
Intersección Superficie-superficie
id REVUNITRU_e7ce0d2483a5c6d063af8554fd060714
oai_identifier_str oai:ojs.revistas.unitru.edu.pe:article/6625
network_acronym_str REVUNITRU
network_name_str Revistas - Universidad Nacional de Trujillo
repository_id_str
spelling Tangential intersection curves of two surfaces in the three-dimensional Lorentz-Minkowski spaceTangential intersection curves of two surfaces in the three-dimensional Lorentz-Minkowski spaceTangential intersection curves of two surfaces in the three-dimensional Lorentz-Minkowski spaceAlessio, OsmarRamos Cintra Neto, Luiz AugustoEuler Rodrigues formulaTangential IntersectionLorentz Minkowski spaceSurface-surface intersectionFórmula Euler RodriguesIntersección TangencialEspacio Lorentz MinkowskiIntersección Superficie-superficieEuler Rodrigues formulaTangential IntersectionLorentz Minkowski spaceSurface-surface intersectionWe present algorithms for computing the differential geometry properties of tangential intersection curves of two surfaces in the three-dimensional Lorentz-Minkowski space E31 . We compute the tangent vector of tangential intersection curves of two surfaces parametric, where the surfaces can be: spacelike, timelike, or lightlike. The first method computed the tangent vector using the equality of the projection of the second derivative vector onto the normal vector and second method computes the tangent vector by applying a rotation to a vector projected onto the tangent space, where the axis of rotation is the normal vector of the surface. In Minkowski space, there are three types of rotations, since the normal vectors can be: spacelike, lightlike, or timelike.Presentamos algoritmos para calcular las propiedades de la geometría diferencial de las curvas de intersección tangencial de dos superficies en el espacio de Lorentz-Minkowski tridimensional E31. Calculamos el vector tangente de las curvas de intersección tangencial de dos superficies paramétricas, donde las superficies pueden ser: espaciales (spacelike), temporales (timelike) o isotrópicas (lightlike). El primer método calcula el vector tangente utilizando la igualdad de la proyección del vector derivada segunda sobre el vector normal. El segundo método calcula el vector tangente aplicando una rotación a un vector proyectado sobre el espacio tangente, donde el eje de rotación es el vector normal de la superficie. En el espacio de Minkowski, existen tres tipos de rotaciones, ya que los vectores normales pueden ser: espaciales, isotrópicos o temporales.We present algorithms for computing the differential geometry properties of tangential intersection curves of two surfaces in the three-dimensional Lorentz-Minkowski space E31 . We compute the tangent vector of tangential intersection curves of two surfaces parametric, where the surfaces can be: spacelike, timelike, or lightlike. The first method computed the tangent vector using the equality of the projection of the second derivative vector onto the normal vector and second method computes the tangent vector by applying a rotation to a vector projected onto the tangent space, where the axis of rotation is the normal vector of the surface. In Minkowski space, there are three types of rotations, since the normal vectors can be: spacelike, lightlike, or timelike.National University of Trujillo - Academic Department of Mathematics2025-07-26info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://revistas.unitru.edu.pe/index.php/SSMM/article/view/6625Selecciones Matemáticas; Vol. 12 No. 01 (2025): January - July; 97 - 122Selecciones Matemáticas; Vol. 12 Núm. 01 (2025): Enero - Julio; 97 - 122Selecciones Matemáticas; v. 12 n. 01 (2025): Janeiro - Julho; 97 - 1222411-1783reponame:Revistas - Universidad Nacional de Trujilloinstname:Universidad Nacional de Trujilloinstacron:UNITRUenghttps://revistas.unitru.edu.pe/index.php/SSMM/article/view/6625/6859https://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessoai:ojs.revistas.unitru.edu.pe:article/66252025-07-26T15:43:48Z
dc.title.none.fl_str_mv Tangential intersection curves of two surfaces in the three-dimensional Lorentz-Minkowski space
Tangential intersection curves of two surfaces in the three-dimensional Lorentz-Minkowski space
Tangential intersection curves of two surfaces in the three-dimensional Lorentz-Minkowski space
title Tangential intersection curves of two surfaces in the three-dimensional Lorentz-Minkowski space
spellingShingle Tangential intersection curves of two surfaces in the three-dimensional Lorentz-Minkowski space
Alessio, Osmar
Euler Rodrigues formula
Tangential Intersection
Lorentz Minkowski space
Surface-surface intersection
Fórmula Euler Rodrigues
Intersección Tangencial
Espacio Lorentz Minkowski
Intersección Superficie-superficie
Euler Rodrigues formula
Tangential Intersection
Lorentz Minkowski space
Surface-surface intersection
title_short Tangential intersection curves of two surfaces in the three-dimensional Lorentz-Minkowski space
title_full Tangential intersection curves of two surfaces in the three-dimensional Lorentz-Minkowski space
title_fullStr Tangential intersection curves of two surfaces in the three-dimensional Lorentz-Minkowski space
title_full_unstemmed Tangential intersection curves of two surfaces in the three-dimensional Lorentz-Minkowski space
title_sort Tangential intersection curves of two surfaces in the three-dimensional Lorentz-Minkowski space
dc.creator.none.fl_str_mv Alessio, Osmar
Ramos Cintra Neto, Luiz Augusto
author Alessio, Osmar
author_facet Alessio, Osmar
Ramos Cintra Neto, Luiz Augusto
author_role author
author2 Ramos Cintra Neto, Luiz Augusto
author2_role author
dc.subject.none.fl_str_mv Euler Rodrigues formula
Tangential Intersection
Lorentz Minkowski space
Surface-surface intersection
Fórmula Euler Rodrigues
Intersección Tangencial
Espacio Lorentz Minkowski
Intersección Superficie-superficie
Euler Rodrigues formula
Tangential Intersection
Lorentz Minkowski space
Surface-surface intersection
topic Euler Rodrigues formula
Tangential Intersection
Lorentz Minkowski space
Surface-surface intersection
Fórmula Euler Rodrigues
Intersección Tangencial
Espacio Lorentz Minkowski
Intersección Superficie-superficie
Euler Rodrigues formula
Tangential Intersection
Lorentz Minkowski space
Surface-surface intersection
description We present algorithms for computing the differential geometry properties of tangential intersection curves of two surfaces in the three-dimensional Lorentz-Minkowski space E31 . We compute the tangent vector of tangential intersection curves of two surfaces parametric, where the surfaces can be: spacelike, timelike, or lightlike. The first method computed the tangent vector using the equality of the projection of the second derivative vector onto the normal vector and second method computes the tangent vector by applying a rotation to a vector projected onto the tangent space, where the axis of rotation is the normal vector of the surface. In Minkowski space, there are three types of rotations, since the normal vectors can be: spacelike, lightlike, or timelike.
publishDate 2025
dc.date.none.fl_str_mv 2025-07-26
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv https://revistas.unitru.edu.pe/index.php/SSMM/article/view/6625
url https://revistas.unitru.edu.pe/index.php/SSMM/article/view/6625
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://revistas.unitru.edu.pe/index.php/SSMM/article/view/6625/6859
dc.rights.none.fl_str_mv https://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv National University of Trujillo - Academic Department of Mathematics
publisher.none.fl_str_mv National University of Trujillo - Academic Department of Mathematics
dc.source.none.fl_str_mv Selecciones Matemáticas; Vol. 12 No. 01 (2025): January - July; 97 - 122
Selecciones Matemáticas; Vol. 12 Núm. 01 (2025): Enero - Julio; 97 - 122
Selecciones Matemáticas; v. 12 n. 01 (2025): Janeiro - Julho; 97 - 122
2411-1783
reponame:Revistas - Universidad Nacional de Trujillo
instname:Universidad Nacional de Trujillo
instacron:UNITRU
instname_str Universidad Nacional de Trujillo
instacron_str UNITRU
institution UNITRU
reponame_str Revistas - Universidad Nacional de Trujillo
collection Revistas - Universidad Nacional de Trujillo
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1846521102938931200
score 13.413352
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).