Prediction by Artificial Neural Networks (ANN) of the diffusivity, mass, moisture, volume and solids on osmotically dehydrated yacon (Smallantus sonchifolius)
Descripción del Articulo
The predictive ability of Artificial Neural Network (ANN) on the effect of the concentration (30, 40, 50 y 60 % w/w) and temperature (30, 40 y 50°C) of fructooligosaccharides solution, in the mass, moisture, volume and solids of osmodehydrated yacon cubes, and in the coefficients of the water means...
Autores: | , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2012 |
Institución: | Universidad Nacional de Trujillo |
Repositorio: | Revistas - Universidad Nacional de Trujillo |
Lenguaje: | español |
OAI Identifier: | oai:ojs.revistas.unitru.edu.pe:article/83 |
Enlace del recurso: | https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/83 |
Nivel de acceso: | acceso abierto |
Materia: | Artificial Neural Networks (ANN) effective diffusivity yacon osmotic dehydration. Red Neuronal Artificial (RNA) difusividad efectiva yacón deshidratación osmótica. |
id |
REVUNITRU_df03fdee125d55fb4052211b6e1d669f |
---|---|
oai_identifier_str |
oai:ojs.revistas.unitru.edu.pe:article/83 |
network_acronym_str |
REVUNITRU |
network_name_str |
Revistas - Universidad Nacional de Trujillo |
repository_id_str |
|
spelling |
Prediction by Artificial Neural Networks (ANN) of the diffusivity, mass, moisture, volume and solids on osmotically dehydrated yacon (Smallantus sonchifolius)Predicción mediante Redes Neuronales Artificiales (RNA) de la difusividad, masa, humedad, volumen y sólidos en yacón (Smallantus sonchifolius) deshidratado osmóticamenteRojas Naccha, JulioVásquez Villalobos, VíctorArtificial Neural Networks (ANN)effective diffusivityyaconosmotic dehydration.Red Neuronal Artificial (RNA)difusividad efectivayacóndeshidratación osmótica.The predictive ability of Artificial Neural Network (ANN) on the effect of the concentration (30, 40, 50 y 60 % w/w) and temperature (30, 40 y 50°C) of fructooligosaccharides solution, in the mass, moisture, volume and solids of osmodehydrated yacon cubes, and in the coefficients of the water means effective diffusivity with and without shrinkage was evaluated. The Feedforward type ANN with the Backpropagation training algorithms and the Levenberg-Marquardt weight adjustment was applied, using the following topology: 10-5 goal error, 0.01 learning rate, 0.5 moment coefficient, 2 input neurons, 6 output neurons, one hidden layer with 18 neurons, 15 training stages and logsig-pureline transfer functions. The overall average error achieved by the ANN was 3.44% and correlation coefficients were bigger than 0.9. No significant differences were found between the experimental values and the predicted values achieved by the ANN and with the predicted values achieved by a statistical model of second-order polynomial regression (p > 0.95).Se evaluó la capacidad predictiva de la Red Neuronal Artificial (RNA) en el efecto de la concentración (30, 40, 50 y 60 % p/p) y temperatura (30, 40 y 50°C) de la solución de fructooligosacaridos (FOS) en la masa, humedad, volumen y sólidos en cubos de yacón osmodeshidratados, y en el coeficiente de difusividad efectiva media del agua, con y sin encogimiento. Se aplicó la RNA del tipo Feedforward con los algoritmos de entrenamiento Backpropagation y de ajuste de pesos Levenberg-Marquardt, usando la topología: error meta de 10-5, tasa de aprendizaje de 0.01, coeficiente de momento de 0.5, 2 neuronas de entrada, 6 neuronas de salida, una capa oculta con 18 neuronas, 15 etapas de entrenamiento y funciones de transferencia logsigpurelin. El error promedio global por la RNA fue 3.44% y los coeficientes de correlación fueron mayores a 0.9. No se encontraron diferencias significativas entre los valores experimentales con los valores predichos por la RNA y con los valores predichos por un modelo estadístico de regresión polinomial de segundo orden (p > 0.95).Universidad Nacional de Trujillo2012-08-18info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/83Scientia Agropecuaria; Vol. 3 Núm. 3 (2012): Julio - Septiembre; 201-214Scientia Agropecuaria; Vol. 3 No. 3 (2012): July - September; 201-2142306-67412077-9917reponame:Revistas - Universidad Nacional de Trujilloinstname:Universidad Nacional de Trujilloinstacron:UNITRUspahttps://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/83/92Derechos de autor 2017 Scientia Agropecuariainfo:eu-repo/semantics/openAccessoai:ojs.revistas.unitru.edu.pe:article/832021-07-20T17:14:25Z |
dc.title.none.fl_str_mv |
Prediction by Artificial Neural Networks (ANN) of the diffusivity, mass, moisture, volume and solids on osmotically dehydrated yacon (Smallantus sonchifolius) Predicción mediante Redes Neuronales Artificiales (RNA) de la difusividad, masa, humedad, volumen y sólidos en yacón (Smallantus sonchifolius) deshidratado osmóticamente |
title |
Prediction by Artificial Neural Networks (ANN) of the diffusivity, mass, moisture, volume and solids on osmotically dehydrated yacon (Smallantus sonchifolius) |
spellingShingle |
Prediction by Artificial Neural Networks (ANN) of the diffusivity, mass, moisture, volume and solids on osmotically dehydrated yacon (Smallantus sonchifolius) Rojas Naccha, Julio Artificial Neural Networks (ANN) effective diffusivity yacon osmotic dehydration. Red Neuronal Artificial (RNA) difusividad efectiva yacón deshidratación osmótica. |
title_short |
Prediction by Artificial Neural Networks (ANN) of the diffusivity, mass, moisture, volume and solids on osmotically dehydrated yacon (Smallantus sonchifolius) |
title_full |
Prediction by Artificial Neural Networks (ANN) of the diffusivity, mass, moisture, volume and solids on osmotically dehydrated yacon (Smallantus sonchifolius) |
title_fullStr |
Prediction by Artificial Neural Networks (ANN) of the diffusivity, mass, moisture, volume and solids on osmotically dehydrated yacon (Smallantus sonchifolius) |
title_full_unstemmed |
Prediction by Artificial Neural Networks (ANN) of the diffusivity, mass, moisture, volume and solids on osmotically dehydrated yacon (Smallantus sonchifolius) |
title_sort |
Prediction by Artificial Neural Networks (ANN) of the diffusivity, mass, moisture, volume and solids on osmotically dehydrated yacon (Smallantus sonchifolius) |
dc.creator.none.fl_str_mv |
Rojas Naccha, Julio Vásquez Villalobos, Víctor |
author |
Rojas Naccha, Julio |
author_facet |
Rojas Naccha, Julio Vásquez Villalobos, Víctor |
author_role |
author |
author2 |
Vásquez Villalobos, Víctor |
author2_role |
author |
dc.subject.none.fl_str_mv |
Artificial Neural Networks (ANN) effective diffusivity yacon osmotic dehydration. Red Neuronal Artificial (RNA) difusividad efectiva yacón deshidratación osmótica. |
topic |
Artificial Neural Networks (ANN) effective diffusivity yacon osmotic dehydration. Red Neuronal Artificial (RNA) difusividad efectiva yacón deshidratación osmótica. |
description |
The predictive ability of Artificial Neural Network (ANN) on the effect of the concentration (30, 40, 50 y 60 % w/w) and temperature (30, 40 y 50°C) of fructooligosaccharides solution, in the mass, moisture, volume and solids of osmodehydrated yacon cubes, and in the coefficients of the water means effective diffusivity with and without shrinkage was evaluated. The Feedforward type ANN with the Backpropagation training algorithms and the Levenberg-Marquardt weight adjustment was applied, using the following topology: 10-5 goal error, 0.01 learning rate, 0.5 moment coefficient, 2 input neurons, 6 output neurons, one hidden layer with 18 neurons, 15 training stages and logsig-pureline transfer functions. The overall average error achieved by the ANN was 3.44% and correlation coefficients were bigger than 0.9. No significant differences were found between the experimental values and the predicted values achieved by the ANN and with the predicted values achieved by a statistical model of second-order polynomial regression (p > 0.95). |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-08-18 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/83 |
url |
https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/83 |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.relation.none.fl_str_mv |
https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/83/92 |
dc.rights.none.fl_str_mv |
Derechos de autor 2017 Scientia Agropecuaria info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Derechos de autor 2017 Scientia Agropecuaria |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidad Nacional de Trujillo |
publisher.none.fl_str_mv |
Universidad Nacional de Trujillo |
dc.source.none.fl_str_mv |
Scientia Agropecuaria; Vol. 3 Núm. 3 (2012): Julio - Septiembre; 201-214 Scientia Agropecuaria; Vol. 3 No. 3 (2012): July - September; 201-214 2306-6741 2077-9917 reponame:Revistas - Universidad Nacional de Trujillo instname:Universidad Nacional de Trujillo instacron:UNITRU |
instname_str |
Universidad Nacional de Trujillo |
instacron_str |
UNITRU |
institution |
UNITRU |
reponame_str |
Revistas - Universidad Nacional de Trujillo |
collection |
Revistas - Universidad Nacional de Trujillo |
repository.name.fl_str_mv |
|
repository.mail.fl_str_mv |
|
_version_ |
1844618533628018688 |
score |
13.408957 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).