Prediction by Artificial Neural Networks (ANN) of the diffusivity, mass, moisture, volume and solids on osmotically dehydrated yacon (Smallantus sonchifolius)

Descripción del Articulo

The predictive ability of Artificial Neural Network (ANN) on the effect of the concentration (30, 40, 50 y 60 % w/w) and temperature (30, 40 y 50°C) of fructooligosaccharides solution, in the mass, moisture, volume and solids of osmodehydrated yacon cubes, and in the coefficients of the water means...

Descripción completa

Detalles Bibliográficos
Autores: Rojas Naccha, Julio, Vásquez Villalobos, Víctor
Formato: artículo
Fecha de Publicación:2012
Institución:Universidad Nacional de Trujillo
Repositorio:Revistas - Universidad Nacional de Trujillo
Lenguaje:español
OAI Identifier:oai:ojs.revistas.unitru.edu.pe:article/83
Enlace del recurso:https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/83
Nivel de acceso:acceso abierto
Materia:Artificial Neural Networks (ANN)
effective diffusivity
yacon
osmotic dehydration.
Red Neuronal Artificial (RNA)
difusividad efectiva
yacón
deshidratación osmótica.
id REVUNITRU_df03fdee125d55fb4052211b6e1d669f
oai_identifier_str oai:ojs.revistas.unitru.edu.pe:article/83
network_acronym_str REVUNITRU
network_name_str Revistas - Universidad Nacional de Trujillo
repository_id_str
spelling Prediction by Artificial Neural Networks (ANN) of the diffusivity, mass, moisture, volume and solids on osmotically dehydrated yacon (Smallantus sonchifolius)Predicción mediante Redes Neuronales Artificiales (RNA) de la difusividad, masa, humedad, volumen y sólidos en yacón (Smallantus sonchifolius) deshidratado osmóticamenteRojas Naccha, JulioVásquez Villalobos, VíctorArtificial Neural Networks (ANN)effective diffusivityyaconosmotic dehydration.Red Neuronal Artificial (RNA)difusividad efectivayacóndeshidratación osmótica.The predictive ability of Artificial Neural Network (ANN) on the effect of the concentration (30, 40, 50 y 60 % w/w) and temperature (30, 40 y 50°C) of fructooligosaccharides solution, in the mass, moisture, volume and solids of osmodehydrated yacon cubes, and in the coefficients of the water means effective diffusivity with and without shrinkage was evaluated. The Feedforward type ANN with the Backpropagation training algorithms and the Levenberg-Marquardt weight adjustment was applied, using the following topology: 10-5 goal error, 0.01 learning rate, 0.5 moment coefficient, 2 input neurons, 6 output neurons, one hidden layer with 18 neurons, 15 training stages and logsig-pureline transfer functions. The overall average error achieved by the ANN was 3.44% and correlation coefficients were bigger than 0.9. No significant differences were found between the experimental values and the predicted values achieved by the ANN and with the predicted values achieved by a statistical model of second-order polynomial regression (p > 0.95).Se evaluó la capacidad predictiva de la Red Neuronal Artificial (RNA) en el efecto de la concentración (30, 40, 50 y 60 % p/p) y temperatura (30, 40 y 50°C) de la solución de fructooligosacaridos (FOS) en la masa, humedad, volumen y sólidos en cubos de yacón osmodeshidratados, y en el coeficiente de difusividad efectiva media del agua, con y sin encogimiento. Se aplicó la RNA del tipo Feedforward con los algoritmos de entrenamiento Backpropagation y de ajuste de pesos Levenberg-Marquardt, usando la topología: error meta de 10-5, tasa de aprendizaje de 0.01, coeficiente de momento de 0.5, 2 neuronas de entrada, 6 neuronas de salida, una capa oculta con 18 neuronas, 15 etapas de entrenamiento y funciones de transferencia logsigpurelin. El error promedio global por la RNA fue 3.44% y los coeficientes de correlación fueron mayores a 0.9. No se encontraron diferencias significativas entre los valores experimentales con los valores predichos por la RNA y con los valores predichos por un modelo estadístico de regresión polinomial de segundo orden (p > 0.95).Universidad Nacional de Trujillo2012-08-18info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/83Scientia Agropecuaria; Vol. 3 Núm. 3 (2012): Julio - Septiembre; 201-214Scientia Agropecuaria; Vol. 3 No. 3 (2012): July - September; 201-2142306-67412077-9917reponame:Revistas - Universidad Nacional de Trujilloinstname:Universidad Nacional de Trujilloinstacron:UNITRUspahttps://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/83/92Derechos de autor 2017 Scientia Agropecuariainfo:eu-repo/semantics/openAccessoai:ojs.revistas.unitru.edu.pe:article/832021-07-20T17:14:25Z
dc.title.none.fl_str_mv Prediction by Artificial Neural Networks (ANN) of the diffusivity, mass, moisture, volume and solids on osmotically dehydrated yacon (Smallantus sonchifolius)
Predicción mediante Redes Neuronales Artificiales (RNA) de la difusividad, masa, humedad, volumen y sólidos en yacón (Smallantus sonchifolius) deshidratado osmóticamente
title Prediction by Artificial Neural Networks (ANN) of the diffusivity, mass, moisture, volume and solids on osmotically dehydrated yacon (Smallantus sonchifolius)
spellingShingle Prediction by Artificial Neural Networks (ANN) of the diffusivity, mass, moisture, volume and solids on osmotically dehydrated yacon (Smallantus sonchifolius)
Rojas Naccha, Julio
Artificial Neural Networks (ANN)
effective diffusivity
yacon
osmotic dehydration.
Red Neuronal Artificial (RNA)
difusividad efectiva
yacón
deshidratación osmótica.
title_short Prediction by Artificial Neural Networks (ANN) of the diffusivity, mass, moisture, volume and solids on osmotically dehydrated yacon (Smallantus sonchifolius)
title_full Prediction by Artificial Neural Networks (ANN) of the diffusivity, mass, moisture, volume and solids on osmotically dehydrated yacon (Smallantus sonchifolius)
title_fullStr Prediction by Artificial Neural Networks (ANN) of the diffusivity, mass, moisture, volume and solids on osmotically dehydrated yacon (Smallantus sonchifolius)
title_full_unstemmed Prediction by Artificial Neural Networks (ANN) of the diffusivity, mass, moisture, volume and solids on osmotically dehydrated yacon (Smallantus sonchifolius)
title_sort Prediction by Artificial Neural Networks (ANN) of the diffusivity, mass, moisture, volume and solids on osmotically dehydrated yacon (Smallantus sonchifolius)
dc.creator.none.fl_str_mv Rojas Naccha, Julio
Vásquez Villalobos, Víctor
author Rojas Naccha, Julio
author_facet Rojas Naccha, Julio
Vásquez Villalobos, Víctor
author_role author
author2 Vásquez Villalobos, Víctor
author2_role author
dc.subject.none.fl_str_mv Artificial Neural Networks (ANN)
effective diffusivity
yacon
osmotic dehydration.
Red Neuronal Artificial (RNA)
difusividad efectiva
yacón
deshidratación osmótica.
topic Artificial Neural Networks (ANN)
effective diffusivity
yacon
osmotic dehydration.
Red Neuronal Artificial (RNA)
difusividad efectiva
yacón
deshidratación osmótica.
description The predictive ability of Artificial Neural Network (ANN) on the effect of the concentration (30, 40, 50 y 60 % w/w) and temperature (30, 40 y 50°C) of fructooligosaccharides solution, in the mass, moisture, volume and solids of osmodehydrated yacon cubes, and in the coefficients of the water means effective diffusivity with and without shrinkage was evaluated. The Feedforward type ANN with the Backpropagation training algorithms and the Levenberg-Marquardt weight adjustment was applied, using the following topology: 10-5 goal error, 0.01 learning rate, 0.5 moment coefficient, 2 input neurons, 6 output neurons, one hidden layer with 18 neurons, 15 training stages and logsig-pureline transfer functions. The overall average error achieved by the ANN was 3.44% and correlation coefficients were bigger than 0.9. No significant differences were found between the experimental values and the predicted values achieved by the ANN and with the predicted values achieved by a statistical model of second-order polynomial regression (p > 0.95).
publishDate 2012
dc.date.none.fl_str_mv 2012-08-18
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/83
url https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/83
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/83/92
dc.rights.none.fl_str_mv Derechos de autor 2017 Scientia Agropecuaria
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Derechos de autor 2017 Scientia Agropecuaria
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad Nacional de Trujillo
publisher.none.fl_str_mv Universidad Nacional de Trujillo
dc.source.none.fl_str_mv Scientia Agropecuaria; Vol. 3 Núm. 3 (2012): Julio - Septiembre; 201-214
Scientia Agropecuaria; Vol. 3 No. 3 (2012): July - September; 201-214
2306-6741
2077-9917
reponame:Revistas - Universidad Nacional de Trujillo
instname:Universidad Nacional de Trujillo
instacron:UNITRU
instname_str Universidad Nacional de Trujillo
instacron_str UNITRU
institution UNITRU
reponame_str Revistas - Universidad Nacional de Trujillo
collection Revistas - Universidad Nacional de Trujillo
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1844618533628018688
score 13.408957
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).