Identification of vulnerable areas to flash floods using weighted sum analysis and unsupervised machine learning in arid regions of the northern Atacama Desert

Descripción del Articulo

In recent decades, global warming has triggered significant changes in the hydrological cycle, leading to various disasters, especially contrasting events such as droughts and floods. These occurrences have also been recorded in the Atacama Desert, resulting in considerable economic losses worldwide...

Descripción completa

Detalles Bibliográficos
Autores: Pino-Vargas, Edwin, Huayna, German, Tapia, Ángel, Pocco, Víctor, Espinoza-Molina, Jorge, Cabrera-Olivera, Fredy, Huanacuni-Lupaca, César, Acosta-Caipa, Karina, Ramos-Fernández, Lía
Formato: artículo
Fecha de Publicación:2025
Institución:Universidad Nacional de Trujillo
Repositorio:Revistas - Universidad Nacional de Trujillo
Lenguaje:inglés
español
OAI Identifier:oai:ojs.revistas.unitru.edu.pe:article/6341
Enlace del recurso:https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/6341
Nivel de acceso:acceso abierto
Materia:Flash floods
Caplina Basin
Weighted Sum Analysis
Unsupervised Machine Learning
Atacama Desert
id REVUNITRU_d3641b8e021cb62977b02498e37c2a0d
oai_identifier_str oai:ojs.revistas.unitru.edu.pe:article/6341
network_acronym_str REVUNITRU
network_name_str Revistas - Universidad Nacional de Trujillo
repository_id_str
spelling Identification of vulnerable areas to flash floods using weighted sum analysis and unsupervised machine learning in arid regions of the northern Atacama DesertPino-Vargas, EdwinHuayna, GermanTapia, ÁngelPocco, VíctorEspinoza-Molina, JorgeCabrera-Olivera, Fredy Huanacuni-Lupaca, CésarAcosta-Caipa, KarinaRamos-Fernández, LíaFlash floodsCaplina BasinWeighted Sum AnalysisUnsupervised Machine LearningAtacama DesertIn recent decades, global warming has triggered significant changes in the hydrological cycle, leading to various disasters, especially contrasting events such as droughts and floods. These occurrences have also been recorded in the Atacama Desert, resulting in considerable economic losses worldwide, in Latin America, in Peru, and within the study region. The primary objective of this study is to obtain fundamental morphometric parameters, including basic spatial, linear, shape, and landscape aspects through the integration of GIS tools and artificial intelligence, enabling the identification of flood-prone areas within micro-watersheds. The studied basin is located at the head of the Atacama Desert, in southern Peru, where various lithological and hydro-geomorphological structures influence its vulnerability to floods. To assess flood vulnerability in the Caplina River micro-watersheds, 16 morphometric parameters were precisely analyzed, identifying areas of high vulnerability that require basin management measures. The results show that the hydrological response of the Caplina Basin is strongly influenced by its morphometric characteristics, with micro-watersheds in the middle and lower sections exhibiting higher susceptibility to flash floods. These findings aim to support urban planning and watershed management, offering insights for policymakers to develop flood mitigation strategies and enhance infrastructure resilience.Universidad Nacional de Trujillo2025-04-15info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfapplication/pdfhttps://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/6341Scientia Agropecuaria; Vol. 16 Núm. 2 (2025): Abril - Junio; 249-261Scientia Agropecuaria; Vol. 16 No. 2 (2025): Abril - Junio; 249-2612306-67412077-9917reponame:Revistas - Universidad Nacional de Trujilloinstname:Universidad Nacional de Trujilloinstacron:UNITRUengspahttps://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/6341/6387https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/6341/6397Derechos de autor 2025 Scientia Agropecuariahttps://creativecommons.org/licenses/by-nc/4.0info:eu-repo/semantics/openAccessoai:ojs.revistas.unitru.edu.pe:article/63412025-04-15T13:41:59Z
dc.title.none.fl_str_mv Identification of vulnerable areas to flash floods using weighted sum analysis and unsupervised machine learning in arid regions of the northern Atacama Desert
title Identification of vulnerable areas to flash floods using weighted sum analysis and unsupervised machine learning in arid regions of the northern Atacama Desert
spellingShingle Identification of vulnerable areas to flash floods using weighted sum analysis and unsupervised machine learning in arid regions of the northern Atacama Desert
Pino-Vargas, Edwin
Flash floods
Caplina Basin
Weighted Sum Analysis
Unsupervised Machine Learning
Atacama Desert
title_short Identification of vulnerable areas to flash floods using weighted sum analysis and unsupervised machine learning in arid regions of the northern Atacama Desert
title_full Identification of vulnerable areas to flash floods using weighted sum analysis and unsupervised machine learning in arid regions of the northern Atacama Desert
title_fullStr Identification of vulnerable areas to flash floods using weighted sum analysis and unsupervised machine learning in arid regions of the northern Atacama Desert
title_full_unstemmed Identification of vulnerable areas to flash floods using weighted sum analysis and unsupervised machine learning in arid regions of the northern Atacama Desert
title_sort Identification of vulnerable areas to flash floods using weighted sum analysis and unsupervised machine learning in arid regions of the northern Atacama Desert
dc.creator.none.fl_str_mv Pino-Vargas, Edwin
Huayna, German
Tapia, Ángel
Pocco, Víctor
Espinoza-Molina, Jorge
Cabrera-Olivera, Fredy
Huanacuni-Lupaca, César
Acosta-Caipa, Karina
Ramos-Fernández, Lía
author Pino-Vargas, Edwin
author_facet Pino-Vargas, Edwin
Huayna, German
Tapia, Ángel
Pocco, Víctor
Espinoza-Molina, Jorge
Cabrera-Olivera, Fredy
Huanacuni-Lupaca, César
Acosta-Caipa, Karina
Ramos-Fernández, Lía
author_role author
author2 Huayna, German
Tapia, Ángel
Pocco, Víctor
Espinoza-Molina, Jorge
Cabrera-Olivera, Fredy
Huanacuni-Lupaca, César
Acosta-Caipa, Karina
Ramos-Fernández, Lía
author2_role author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv Flash floods
Caplina Basin
Weighted Sum Analysis
Unsupervised Machine Learning
Atacama Desert
topic Flash floods
Caplina Basin
Weighted Sum Analysis
Unsupervised Machine Learning
Atacama Desert
description In recent decades, global warming has triggered significant changes in the hydrological cycle, leading to various disasters, especially contrasting events such as droughts and floods. These occurrences have also been recorded in the Atacama Desert, resulting in considerable economic losses worldwide, in Latin America, in Peru, and within the study region. The primary objective of this study is to obtain fundamental morphometric parameters, including basic spatial, linear, shape, and landscape aspects through the integration of GIS tools and artificial intelligence, enabling the identification of flood-prone areas within micro-watersheds. The studied basin is located at the head of the Atacama Desert, in southern Peru, where various lithological and hydro-geomorphological structures influence its vulnerability to floods. To assess flood vulnerability in the Caplina River micro-watersheds, 16 morphometric parameters were precisely analyzed, identifying areas of high vulnerability that require basin management measures. The results show that the hydrological response of the Caplina Basin is strongly influenced by its morphometric characteristics, with micro-watersheds in the middle and lower sections exhibiting higher susceptibility to flash floods. These findings aim to support urban planning and watershed management, offering insights for policymakers to develop flood mitigation strategies and enhance infrastructure resilience.
publishDate 2025
dc.date.none.fl_str_mv 2025-04-15
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/6341
url https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/6341
dc.language.none.fl_str_mv eng
spa
language eng
spa
dc.relation.none.fl_str_mv https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/6341/6387
https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/6341/6397
dc.rights.none.fl_str_mv Derechos de autor 2025 Scientia Agropecuaria
https://creativecommons.org/licenses/by-nc/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Derechos de autor 2025 Scientia Agropecuaria
https://creativecommons.org/licenses/by-nc/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Universidad Nacional de Trujillo
publisher.none.fl_str_mv Universidad Nacional de Trujillo
dc.source.none.fl_str_mv Scientia Agropecuaria; Vol. 16 Núm. 2 (2025): Abril - Junio; 249-261
Scientia Agropecuaria; Vol. 16 No. 2 (2025): Abril - Junio; 249-261
2306-6741
2077-9917
reponame:Revistas - Universidad Nacional de Trujillo
instname:Universidad Nacional de Trujillo
instacron:UNITRU
instname_str Universidad Nacional de Trujillo
instacron_str UNITRU
institution UNITRU
reponame_str Revistas - Universidad Nacional de Trujillo
collection Revistas - Universidad Nacional de Trujillo
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1846521098302128128
score 13.057984
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).