On a special class of hypersurfaces in R5
Descripción del Articulo
In this paper we study hypersurfaces in R5 parametrized by lines of curvature, with four distinct principal curvatures and with Laplace invariants mji = mki = mli = 0, mjik ̸= 0, mjkl ̸= 0, mljk ̸= 0, Tijkl ̸= 0 for i, j, k, l distinct fixed indices. We characterize locally a generic family...
| Autor: | |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2025 |
| Institución: | Universidad Nacional de Trujillo |
| Repositorio: | Revistas - Universidad Nacional de Trujillo |
| Lenguaje: | inglés |
| OAI Identifier: | oai:ojs.revistas.unitru.edu.pe:article/7100 |
| Enlace del recurso: | https://revistas.unitru.edu.pe/index.php/SSMM/article/view/7100 |
| Nivel de acceso: | acceso abierto |
| Materia: | Hypersurfaces Laplace invariants lines of curvature Mobius curvature |
| id |
REVUNITRU_bdb1d09c21956ce725e24bf92817d913 |
|---|---|
| oai_identifier_str |
oai:ojs.revistas.unitru.edu.pe:article/7100 |
| network_acronym_str |
REVUNITRU |
| network_name_str |
Revistas - Universidad Nacional de Trujillo |
| repository_id_str |
|
| spelling |
On a special class of hypersurfaces in R5On a special class of hypersurfaces in R5C. Riveros, Carlos M.HypersurfacesLaplace invariantslines of curvatureMobius curvatureHypersurfacesLaplace invariantslines of curvatureMobius curvatureIn this paper we study hypersurfaces in R5 parametrized by lines of curvature, with four distinct principal curvatures and with Laplace invariants mji = mki = mli = 0, mjik ̸= 0, mjkl ̸= 0, mljk ̸= 0, Tijkl ̸= 0 for i, j, k, l distinct fixed indices. We characterize locally a generic family of such hypersurfaces in terms of the principal curvatures and four vector valued functions of one variable. Moreover, we show that these vector valued functions are invariant under inversions and homotheties. We observe that this class of hypersurfaces cannot have constant Mobius curvature.In this paper we study hypersurfaces in R5 parametrized by lines of curvature, with four distinct principal curvatures and with Laplace invariants mji = mki = mli = 0, mjik ̸= 0, mjkl ̸= 0, mljk ̸= 0, Tijkl ̸= 0 for i, j, k, l distinct fixed indices. We characterize locally a generic family of such hypersurfaces in terms of the principal curvatures and four vector valued functions of one variable. Moreover, we show that these vector valued functions are invariant under inversions and homotheties. We observe that this class of hypersurfaces cannot have constant Mobius curvature.National University of Trujillo - Academic Department of Mathematics2025-12-27info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://revistas.unitru.edu.pe/index.php/SSMM/article/view/7100Selecciones Matemáticas; Vol. 12 No. 02 (2025): August - December; 423 - 438Selecciones Matemáticas; Vol. 12 Núm. 02 (2025): Agosto - Diciembre; 423 - 438Selecciones Matemáticas; v. 12 n. 02 (2025): Agosto - Dezembro; 423 - 4382411-1783reponame:Revistas - Universidad Nacional de Trujilloinstname:Universidad Nacional de Trujilloinstacron:UNITRUenghttps://revistas.unitru.edu.pe/index.php/SSMM/article/view/7100/7117https://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessoai:ojs.revistas.unitru.edu.pe:article/71002025-12-27T01:09:48Z |
| dc.title.none.fl_str_mv |
On a special class of hypersurfaces in R5 On a special class of hypersurfaces in R5 |
| title |
On a special class of hypersurfaces in R5 |
| spellingShingle |
On a special class of hypersurfaces in R5 C. Riveros, Carlos M. Hypersurfaces Laplace invariants lines of curvature Mobius curvature Hypersurfaces Laplace invariants lines of curvature Mobius curvature |
| title_short |
On a special class of hypersurfaces in R5 |
| title_full |
On a special class of hypersurfaces in R5 |
| title_fullStr |
On a special class of hypersurfaces in R5 |
| title_full_unstemmed |
On a special class of hypersurfaces in R5 |
| title_sort |
On a special class of hypersurfaces in R5 |
| dc.creator.none.fl_str_mv |
C. Riveros, Carlos M. |
| author |
C. Riveros, Carlos M. |
| author_facet |
C. Riveros, Carlos M. |
| author_role |
author |
| dc.subject.none.fl_str_mv |
Hypersurfaces Laplace invariants lines of curvature Mobius curvature Hypersurfaces Laplace invariants lines of curvature Mobius curvature |
| topic |
Hypersurfaces Laplace invariants lines of curvature Mobius curvature Hypersurfaces Laplace invariants lines of curvature Mobius curvature |
| description |
In this paper we study hypersurfaces in R5 parametrized by lines of curvature, with four distinct principal curvatures and with Laplace invariants mji = mki = mli = 0, mjik ̸= 0, mjkl ̸= 0, mljk ̸= 0, Tijkl ̸= 0 for i, j, k, l distinct fixed indices. We characterize locally a generic family of such hypersurfaces in terms of the principal curvatures and four vector valued functions of one variable. Moreover, we show that these vector valued functions are invariant under inversions and homotheties. We observe that this class of hypersurfaces cannot have constant Mobius curvature. |
| publishDate |
2025 |
| dc.date.none.fl_str_mv |
2025-12-27 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
https://revistas.unitru.edu.pe/index.php/SSMM/article/view/7100 |
| url |
https://revistas.unitru.edu.pe/index.php/SSMM/article/view/7100 |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
https://revistas.unitru.edu.pe/index.php/SSMM/article/view/7100/7117 |
| dc.rights.none.fl_str_mv |
https://creativecommons.org/licenses/by/4.0 info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by/4.0 |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
National University of Trujillo - Academic Department of Mathematics |
| publisher.none.fl_str_mv |
National University of Trujillo - Academic Department of Mathematics |
| dc.source.none.fl_str_mv |
Selecciones Matemáticas; Vol. 12 No. 02 (2025): August - December; 423 - 438 Selecciones Matemáticas; Vol. 12 Núm. 02 (2025): Agosto - Diciembre; 423 - 438 Selecciones Matemáticas; v. 12 n. 02 (2025): Agosto - Dezembro; 423 - 438 2411-1783 reponame:Revistas - Universidad Nacional de Trujillo instname:Universidad Nacional de Trujillo instacron:UNITRU |
| instname_str |
Universidad Nacional de Trujillo |
| instacron_str |
UNITRU |
| institution |
UNITRU |
| reponame_str |
Revistas - Universidad Nacional de Trujillo |
| collection |
Revistas - Universidad Nacional de Trujillo |
| repository.name.fl_str_mv |
|
| repository.mail.fl_str_mv |
|
| _version_ |
1852864028451274752 |
| score |
13.941906 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).