On a special class of hypersurfaces in R5

Descripción del Articulo

In this paper we study hypersurfaces in R5 parametrized by lines of curvature, with four distinct principal curvatures and with Laplace invariants mji = mki = mli = 0, mjik ̸= 0, mjkl ̸= 0, mljk ̸= 0, Tijkl ̸= 0 for i, j, k, l distinct fixed indices. We characterize locally a generic family...

Descripción completa

Detalles Bibliográficos
Autor: C. Riveros, Carlos M.
Formato: artículo
Fecha de Publicación:2025
Institución:Universidad Nacional de Trujillo
Repositorio:Revistas - Universidad Nacional de Trujillo
Lenguaje:inglés
OAI Identifier:oai:ojs.revistas.unitru.edu.pe:article/7100
Enlace del recurso:https://revistas.unitru.edu.pe/index.php/SSMM/article/view/7100
Nivel de acceso:acceso abierto
Materia:Hypersurfaces
Laplace invariants
lines of curvature
Mobius curvature
id REVUNITRU_bdb1d09c21956ce725e24bf92817d913
oai_identifier_str oai:ojs.revistas.unitru.edu.pe:article/7100
network_acronym_str REVUNITRU
network_name_str Revistas - Universidad Nacional de Trujillo
repository_id_str
spelling On a special class of hypersurfaces in R5On a special class of hypersurfaces in R5C. Riveros, Carlos M.HypersurfacesLaplace invariantslines of curvatureMobius curvatureHypersurfacesLaplace invariantslines of curvatureMobius curvatureIn this paper we study hypersurfaces in R5 parametrized by lines of curvature, with four distinct principal curvatures and with Laplace invariants mji = mki = mli = 0, mjik ̸= 0, mjkl ̸= 0, mljk ̸= 0, Tijkl ̸= 0 for i, j, k, l distinct fixed indices. We characterize locally a generic family of such hypersurfaces in terms of the principal curvatures and four vector valued functions of one variable. Moreover, we show that these vector valued functions are invariant under inversions and homotheties. We observe that this class of hypersurfaces cannot have constant Mobius curvature.In this paper we study hypersurfaces in R5 parametrized by lines of curvature, with four distinct principal curvatures and with Laplace invariants mji = mki = mli = 0, mjik ̸= 0, mjkl ̸= 0, mljk ̸= 0, Tijkl ̸= 0 for i, j, k, l distinct fixed indices. We characterize locally a generic family of such hypersurfaces in terms of the principal curvatures and four vector valued functions of one variable. Moreover, we show that these vector valued functions are invariant under inversions and homotheties. We observe that this class of hypersurfaces cannot have constant Mobius curvature.National University of Trujillo - Academic Department of Mathematics2025-12-27info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://revistas.unitru.edu.pe/index.php/SSMM/article/view/7100Selecciones Matemáticas; Vol. 12 No. 02 (2025): August - December; 423 - 438Selecciones Matemáticas; Vol. 12 Núm. 02 (2025): Agosto - Diciembre; 423 - 438Selecciones Matemáticas; v. 12 n. 02 (2025): Agosto - Dezembro; 423 - 4382411-1783reponame:Revistas - Universidad Nacional de Trujilloinstname:Universidad Nacional de Trujilloinstacron:UNITRUenghttps://revistas.unitru.edu.pe/index.php/SSMM/article/view/7100/7117https://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessoai:ojs.revistas.unitru.edu.pe:article/71002025-12-27T01:09:48Z
dc.title.none.fl_str_mv On a special class of hypersurfaces in R5
On a special class of hypersurfaces in R5
title On a special class of hypersurfaces in R5
spellingShingle On a special class of hypersurfaces in R5
C. Riveros, Carlos M.
Hypersurfaces
Laplace invariants
lines of curvature
Mobius curvature
Hypersurfaces
Laplace invariants
lines of curvature
Mobius curvature
title_short On a special class of hypersurfaces in R5
title_full On a special class of hypersurfaces in R5
title_fullStr On a special class of hypersurfaces in R5
title_full_unstemmed On a special class of hypersurfaces in R5
title_sort On a special class of hypersurfaces in R5
dc.creator.none.fl_str_mv C. Riveros, Carlos M.
author C. Riveros, Carlos M.
author_facet C. Riveros, Carlos M.
author_role author
dc.subject.none.fl_str_mv Hypersurfaces
Laplace invariants
lines of curvature
Mobius curvature
Hypersurfaces
Laplace invariants
lines of curvature
Mobius curvature
topic Hypersurfaces
Laplace invariants
lines of curvature
Mobius curvature
Hypersurfaces
Laplace invariants
lines of curvature
Mobius curvature
description In this paper we study hypersurfaces in R5 parametrized by lines of curvature, with four distinct principal curvatures and with Laplace invariants mji = mki = mli = 0, mjik ̸= 0, mjkl ̸= 0, mljk ̸= 0, Tijkl ̸= 0 for i, j, k, l distinct fixed indices. We characterize locally a generic family of such hypersurfaces in terms of the principal curvatures and four vector valued functions of one variable. Moreover, we show that these vector valued functions are invariant under inversions and homotheties. We observe that this class of hypersurfaces cannot have constant Mobius curvature.
publishDate 2025
dc.date.none.fl_str_mv 2025-12-27
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv https://revistas.unitru.edu.pe/index.php/SSMM/article/view/7100
url https://revistas.unitru.edu.pe/index.php/SSMM/article/view/7100
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://revistas.unitru.edu.pe/index.php/SSMM/article/view/7100/7117
dc.rights.none.fl_str_mv https://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv National University of Trujillo - Academic Department of Mathematics
publisher.none.fl_str_mv National University of Trujillo - Academic Department of Mathematics
dc.source.none.fl_str_mv Selecciones Matemáticas; Vol. 12 No. 02 (2025): August - December; 423 - 438
Selecciones Matemáticas; Vol. 12 Núm. 02 (2025): Agosto - Diciembre; 423 - 438
Selecciones Matemáticas; v. 12 n. 02 (2025): Agosto - Dezembro; 423 - 438
2411-1783
reponame:Revistas - Universidad Nacional de Trujillo
instname:Universidad Nacional de Trujillo
instacron:UNITRU
instname_str Universidad Nacional de Trujillo
instacron_str UNITRU
institution UNITRU
reponame_str Revistas - Universidad Nacional de Trujillo
collection Revistas - Universidad Nacional de Trujillo
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1852864028451274752
score 13.941906
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).