Estimation of nitrogen content in sugarcane based on vegetation indices derived from Sentinel-2 data

Descripción del Articulo

Sugarcane occupies a large territorial scale in the world and is constantly searching for mechanisms to monitor nutrients in the crop production cycle, using non-destructive methods. The study aimed to estimate the nitrogen content in the sugarcane leaf was developed in the 2021/2022 harvest on two...

Descripción completa

Detalles Bibliográficos
Autores: Filho, Jose Neto Soares, Pereira, Douglas Endrigo Perez, Noronha, Amanda Soares Regis
Formato: artículo
Fecha de Publicación:2025
Institución:Universidad Nacional de Trujillo
Repositorio:Revistas - Universidad Nacional de Trujillo
Lenguaje:portugués
OAI Identifier:oai:ojs.revistas.unitru.edu.pe:article/6200
Enlace del recurso:https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/6200
Nivel de acceso:acceso abierto
Materia:agro-modelo
cultivares
dossel
sensoriamento remoto
inteligencia artificial
agro-model
canopy
remote sensing
artificial intelligence
id REVUNITRU_a3af20b0d1c45b418b802820ccbd3dc7
oai_identifier_str oai:ojs.revistas.unitru.edu.pe:article/6200
network_acronym_str REVUNITRU
network_name_str Revistas - Universidad Nacional de Trujillo
repository_id_str
spelling Estimation of nitrogen content in sugarcane based on vegetation indices derived from Sentinel-2 dataEstimativa do conteúdo de nitrogênio na cana-de-açúcar baseado em índices de vegetação derivados de dados Sentinel-2Filho, Jose Neto SoaresPereira, Douglas Endrigo PerezNoronha, Amanda Soares Regisagro-modelocultivaresdosselsensoriamento remotointeligencia artificialagro-modelcultivarescanopyremote sensingartificial intelligenceSugarcane occupies a large territorial scale in the world and is constantly searching for mechanisms to monitor nutrients in the crop production cycle, using non-destructive methods. The study aimed to estimate the nitrogen content in the sugarcane leaf was developed in the 2021/2022 harvest on two commercial fields of dryland cultivars (RB867515 = 50.75 ha) and (CVSP7870 = 48.56 ha) at the Serranópolis-Goiás mill, evaluating the efficiency of the biochemical vegetation indices Fraction of Absorbed Photosynthetically Active Radiation (fAPAR) and Canopy Chlorophyll Content (CCC) processed using the radiation transfer model RTM PROSAIL, compared to the Normalized Difference Vegetation Index (NDVI) and Green Normalized Difference Vegetation Index (GNDVI), processed using mathematical band ratio models. Both were based on a time series of Sentinel-2 data as input variables. The validation of the Agro-Model occurred through analysis of leaf tissue collected in seven interspersed evaluations during the period the crop remained in the field. The functionality of the four indexes was evidenced, highlighting the biochemical index fAPAR from the perspective of descriptive statistics (R² = 0.970 and RMSE = 0.46) for the cultivar RB867515 and (R² = 0.940 and RMSE = 0.69) for the cultivar CVSP7870.A cana-de-açúcar ocupa grande escala territorial no mundo e busca constantemente por mecanismos para monitorar os nutrientes no ciclo de produção da cultura, utilizando métodos não destrutivos. O estudo com objetivo estimar o teor de nitrogênio na folha da cana-de-açúcar foi desenvolvido na safra 2021/2022 sobre dois talhões comerciais de sequeiro cultivares (RB867515 = 50,75 ha) e (CVSP7870 = 48,56 ha) na Usina Energética Serranópolis-Goiás, avaliando a eficiência dos índices bioquímicos de vegetação Fraction of Absorbed Photosynthetically Active Radiation (fAPAR) e Canopy Chlorophyll Content (CCC) processados utilizando modelo de transferência de radiação RTM PROSAIL, comparados aos índices Normalized Difference Vegetation Index (NDVI) e Green Normalized Difference Vegetation Index (GNDVI), processados utilizando modelos matemáticos e razão de bandas. Ambos, baseados em série temporal de dados Sentinel-2 como variáveis de entrada. A validação do Agro-Modelo ocorreu através de análise de tecido foliar coletada em sete avaliações intercaladas durante o período de permanência da cultura no campo. Foi evidenciado a funcionalidade dos quatro índices, destacando o índice bioquímico fAPAR sob a ótica da estatística descritiva (R² = 0,970 e RMSE = 0,46) para o cultivar RB867515 e (R² = 0,940 e RMSE = 0,69) para o cultivar CVSP7870.Universidad Nacional de Trujillo2025-01-14info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlapplication/pdfhttps://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/6200Scientia Agropecuaria; Vol. 16 Núm. 1 (2025): Enero-Marzo; 61-70Scientia Agropecuaria; Vol. 16 No. 1 (2025): Enero-Marzo; 61-702306-67412077-9917reponame:Revistas - Universidad Nacional de Trujilloinstname:Universidad Nacional de Trujilloinstacron:UNITRUporhttps://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/6200/6452https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/6200/6308Derechos de autor 2025 Scientia Agropecuariahttps://creativecommons.org/licenses/by-nc/4.0info:eu-repo/semantics/openAccessoai:ojs.revistas.unitru.edu.pe:article/62002025-01-14T13:36:08Z
dc.title.none.fl_str_mv Estimation of nitrogen content in sugarcane based on vegetation indices derived from Sentinel-2 data
Estimativa do conteúdo de nitrogênio na cana-de-açúcar baseado em índices de vegetação derivados de dados Sentinel-2
title Estimation of nitrogen content in sugarcane based on vegetation indices derived from Sentinel-2 data
spellingShingle Estimation of nitrogen content in sugarcane based on vegetation indices derived from Sentinel-2 data
Filho, Jose Neto Soares
agro-modelo
cultivares
dossel
sensoriamento remoto
inteligencia artificial
agro-model
cultivares
canopy
remote sensing
artificial intelligence
title_short Estimation of nitrogen content in sugarcane based on vegetation indices derived from Sentinel-2 data
title_full Estimation of nitrogen content in sugarcane based on vegetation indices derived from Sentinel-2 data
title_fullStr Estimation of nitrogen content in sugarcane based on vegetation indices derived from Sentinel-2 data
title_full_unstemmed Estimation of nitrogen content in sugarcane based on vegetation indices derived from Sentinel-2 data
title_sort Estimation of nitrogen content in sugarcane based on vegetation indices derived from Sentinel-2 data
dc.creator.none.fl_str_mv Filho, Jose Neto Soares
Pereira, Douglas Endrigo Perez
Noronha, Amanda Soares Regis
author Filho, Jose Neto Soares
author_facet Filho, Jose Neto Soares
Pereira, Douglas Endrigo Perez
Noronha, Amanda Soares Regis
author_role author
author2 Pereira, Douglas Endrigo Perez
Noronha, Amanda Soares Regis
author2_role author
author
dc.subject.none.fl_str_mv agro-modelo
cultivares
dossel
sensoriamento remoto
inteligencia artificial
agro-model
cultivares
canopy
remote sensing
artificial intelligence
topic agro-modelo
cultivares
dossel
sensoriamento remoto
inteligencia artificial
agro-model
cultivares
canopy
remote sensing
artificial intelligence
description Sugarcane occupies a large territorial scale in the world and is constantly searching for mechanisms to monitor nutrients in the crop production cycle, using non-destructive methods. The study aimed to estimate the nitrogen content in the sugarcane leaf was developed in the 2021/2022 harvest on two commercial fields of dryland cultivars (RB867515 = 50.75 ha) and (CVSP7870 = 48.56 ha) at the Serranópolis-Goiás mill, evaluating the efficiency of the biochemical vegetation indices Fraction of Absorbed Photosynthetically Active Radiation (fAPAR) and Canopy Chlorophyll Content (CCC) processed using the radiation transfer model RTM PROSAIL, compared to the Normalized Difference Vegetation Index (NDVI) and Green Normalized Difference Vegetation Index (GNDVI), processed using mathematical band ratio models. Both were based on a time series of Sentinel-2 data as input variables. The validation of the Agro-Model occurred through analysis of leaf tissue collected in seven interspersed evaluations during the period the crop remained in the field. The functionality of the four indexes was evidenced, highlighting the biochemical index fAPAR from the perspective of descriptive statistics (R² = 0.970 and RMSE = 0.46) for the cultivar RB867515 and (R² = 0.940 and RMSE = 0.69) for the cultivar CVSP7870.
publishDate 2025
dc.date.none.fl_str_mv 2025-01-14
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/6200
url https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/6200
dc.language.none.fl_str_mv por
language por
dc.relation.none.fl_str_mv https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/6200/6452
https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/6200/6308
dc.rights.none.fl_str_mv Derechos de autor 2025 Scientia Agropecuaria
https://creativecommons.org/licenses/by-nc/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Derechos de autor 2025 Scientia Agropecuaria
https://creativecommons.org/licenses/by-nc/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
application/pdf
dc.publisher.none.fl_str_mv Universidad Nacional de Trujillo
publisher.none.fl_str_mv Universidad Nacional de Trujillo
dc.source.none.fl_str_mv Scientia Agropecuaria; Vol. 16 Núm. 1 (2025): Enero-Marzo; 61-70
Scientia Agropecuaria; Vol. 16 No. 1 (2025): Enero-Marzo; 61-70
2306-6741
2077-9917
reponame:Revistas - Universidad Nacional de Trujillo
instname:Universidad Nacional de Trujillo
instacron:UNITRU
instname_str Universidad Nacional de Trujillo
instacron_str UNITRU
institution UNITRU
reponame_str Revistas - Universidad Nacional de Trujillo
collection Revistas - Universidad Nacional de Trujillo
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1846521098266476544
score 13.040751
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).