Estimation of nitrogen content in sugarcane based on vegetation indices derived from Sentinel-2 data
Descripción del Articulo
Sugarcane occupies a large territorial scale in the world and is constantly searching for mechanisms to monitor nutrients in the crop production cycle, using non-destructive methods. The study aimed to estimate the nitrogen content in the sugarcane leaf was developed in the 2021/2022 harvest on two...
| Autores: | , , |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2025 |
| Institución: | Universidad Nacional de Trujillo |
| Repositorio: | Revistas - Universidad Nacional de Trujillo |
| Lenguaje: | portugués |
| OAI Identifier: | oai:ojs.revistas.unitru.edu.pe:article/6200 |
| Enlace del recurso: | https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/6200 |
| Nivel de acceso: | acceso abierto |
| Materia: | agro-modelo cultivares dossel sensoriamento remoto inteligencia artificial agro-model canopy remote sensing artificial intelligence |
| id |
REVUNITRU_a3af20b0d1c45b418b802820ccbd3dc7 |
|---|---|
| oai_identifier_str |
oai:ojs.revistas.unitru.edu.pe:article/6200 |
| network_acronym_str |
REVUNITRU |
| network_name_str |
Revistas - Universidad Nacional de Trujillo |
| repository_id_str |
|
| spelling |
Estimation of nitrogen content in sugarcane based on vegetation indices derived from Sentinel-2 dataEstimativa do conteúdo de nitrogênio na cana-de-açúcar baseado em índices de vegetação derivados de dados Sentinel-2Filho, Jose Neto SoaresPereira, Douglas Endrigo PerezNoronha, Amanda Soares Regisagro-modelocultivaresdosselsensoriamento remotointeligencia artificialagro-modelcultivarescanopyremote sensingartificial intelligenceSugarcane occupies a large territorial scale in the world and is constantly searching for mechanisms to monitor nutrients in the crop production cycle, using non-destructive methods. The study aimed to estimate the nitrogen content in the sugarcane leaf was developed in the 2021/2022 harvest on two commercial fields of dryland cultivars (RB867515 = 50.75 ha) and (CVSP7870 = 48.56 ha) at the Serranópolis-Goiás mill, evaluating the efficiency of the biochemical vegetation indices Fraction of Absorbed Photosynthetically Active Radiation (fAPAR) and Canopy Chlorophyll Content (CCC) processed using the radiation transfer model RTM PROSAIL, compared to the Normalized Difference Vegetation Index (NDVI) and Green Normalized Difference Vegetation Index (GNDVI), processed using mathematical band ratio models. Both were based on a time series of Sentinel-2 data as input variables. The validation of the Agro-Model occurred through analysis of leaf tissue collected in seven interspersed evaluations during the period the crop remained in the field. The functionality of the four indexes was evidenced, highlighting the biochemical index fAPAR from the perspective of descriptive statistics (R² = 0.970 and RMSE = 0.46) for the cultivar RB867515 and (R² = 0.940 and RMSE = 0.69) for the cultivar CVSP7870.A cana-de-açúcar ocupa grande escala territorial no mundo e busca constantemente por mecanismos para monitorar os nutrientes no ciclo de produção da cultura, utilizando métodos não destrutivos. O estudo com objetivo estimar o teor de nitrogênio na folha da cana-de-açúcar foi desenvolvido na safra 2021/2022 sobre dois talhões comerciais de sequeiro cultivares (RB867515 = 50,75 ha) e (CVSP7870 = 48,56 ha) na Usina Energética Serranópolis-Goiás, avaliando a eficiência dos índices bioquímicos de vegetação Fraction of Absorbed Photosynthetically Active Radiation (fAPAR) e Canopy Chlorophyll Content (CCC) processados utilizando modelo de transferência de radiação RTM PROSAIL, comparados aos índices Normalized Difference Vegetation Index (NDVI) e Green Normalized Difference Vegetation Index (GNDVI), processados utilizando modelos matemáticos e razão de bandas. Ambos, baseados em série temporal de dados Sentinel-2 como variáveis de entrada. A validação do Agro-Modelo ocorreu através de análise de tecido foliar coletada em sete avaliações intercaladas durante o período de permanência da cultura no campo. Foi evidenciado a funcionalidade dos quatro índices, destacando o índice bioquímico fAPAR sob a ótica da estatística descritiva (R² = 0,970 e RMSE = 0,46) para o cultivar RB867515 e (R² = 0,940 e RMSE = 0,69) para o cultivar CVSP7870.Universidad Nacional de Trujillo2025-01-14info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlapplication/pdfhttps://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/6200Scientia Agropecuaria; Vol. 16 Núm. 1 (2025): Enero-Marzo; 61-70Scientia Agropecuaria; Vol. 16 No. 1 (2025): Enero-Marzo; 61-702306-67412077-9917reponame:Revistas - Universidad Nacional de Trujilloinstname:Universidad Nacional de Trujilloinstacron:UNITRUporhttps://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/6200/6452https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/6200/6308Derechos de autor 2025 Scientia Agropecuariahttps://creativecommons.org/licenses/by-nc/4.0info:eu-repo/semantics/openAccessoai:ojs.revistas.unitru.edu.pe:article/62002025-01-14T13:36:08Z |
| dc.title.none.fl_str_mv |
Estimation of nitrogen content in sugarcane based on vegetation indices derived from Sentinel-2 data Estimativa do conteúdo de nitrogênio na cana-de-açúcar baseado em índices de vegetação derivados de dados Sentinel-2 |
| title |
Estimation of nitrogen content in sugarcane based on vegetation indices derived from Sentinel-2 data |
| spellingShingle |
Estimation of nitrogen content in sugarcane based on vegetation indices derived from Sentinel-2 data Filho, Jose Neto Soares agro-modelo cultivares dossel sensoriamento remoto inteligencia artificial agro-model cultivares canopy remote sensing artificial intelligence |
| title_short |
Estimation of nitrogen content in sugarcane based on vegetation indices derived from Sentinel-2 data |
| title_full |
Estimation of nitrogen content in sugarcane based on vegetation indices derived from Sentinel-2 data |
| title_fullStr |
Estimation of nitrogen content in sugarcane based on vegetation indices derived from Sentinel-2 data |
| title_full_unstemmed |
Estimation of nitrogen content in sugarcane based on vegetation indices derived from Sentinel-2 data |
| title_sort |
Estimation of nitrogen content in sugarcane based on vegetation indices derived from Sentinel-2 data |
| dc.creator.none.fl_str_mv |
Filho, Jose Neto Soares Pereira, Douglas Endrigo Perez Noronha, Amanda Soares Regis |
| author |
Filho, Jose Neto Soares |
| author_facet |
Filho, Jose Neto Soares Pereira, Douglas Endrigo Perez Noronha, Amanda Soares Regis |
| author_role |
author |
| author2 |
Pereira, Douglas Endrigo Perez Noronha, Amanda Soares Regis |
| author2_role |
author author |
| dc.subject.none.fl_str_mv |
agro-modelo cultivares dossel sensoriamento remoto inteligencia artificial agro-model cultivares canopy remote sensing artificial intelligence |
| topic |
agro-modelo cultivares dossel sensoriamento remoto inteligencia artificial agro-model cultivares canopy remote sensing artificial intelligence |
| description |
Sugarcane occupies a large territorial scale in the world and is constantly searching for mechanisms to monitor nutrients in the crop production cycle, using non-destructive methods. The study aimed to estimate the nitrogen content in the sugarcane leaf was developed in the 2021/2022 harvest on two commercial fields of dryland cultivars (RB867515 = 50.75 ha) and (CVSP7870 = 48.56 ha) at the Serranópolis-Goiás mill, evaluating the efficiency of the biochemical vegetation indices Fraction of Absorbed Photosynthetically Active Radiation (fAPAR) and Canopy Chlorophyll Content (CCC) processed using the radiation transfer model RTM PROSAIL, compared to the Normalized Difference Vegetation Index (NDVI) and Green Normalized Difference Vegetation Index (GNDVI), processed using mathematical band ratio models. Both were based on a time series of Sentinel-2 data as input variables. The validation of the Agro-Model occurred through analysis of leaf tissue collected in seven interspersed evaluations during the period the crop remained in the field. The functionality of the four indexes was evidenced, highlighting the biochemical index fAPAR from the perspective of descriptive statistics (R² = 0.970 and RMSE = 0.46) for the cultivar RB867515 and (R² = 0.940 and RMSE = 0.69) for the cultivar CVSP7870. |
| publishDate |
2025 |
| dc.date.none.fl_str_mv |
2025-01-14 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/6200 |
| url |
https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/6200 |
| dc.language.none.fl_str_mv |
por |
| language |
por |
| dc.relation.none.fl_str_mv |
https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/6200/6452 https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/6200/6308 |
| dc.rights.none.fl_str_mv |
Derechos de autor 2025 Scientia Agropecuaria https://creativecommons.org/licenses/by-nc/4.0 info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Derechos de autor 2025 Scientia Agropecuaria https://creativecommons.org/licenses/by-nc/4.0 |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
text/html application/pdf |
| dc.publisher.none.fl_str_mv |
Universidad Nacional de Trujillo |
| publisher.none.fl_str_mv |
Universidad Nacional de Trujillo |
| dc.source.none.fl_str_mv |
Scientia Agropecuaria; Vol. 16 Núm. 1 (2025): Enero-Marzo; 61-70 Scientia Agropecuaria; Vol. 16 No. 1 (2025): Enero-Marzo; 61-70 2306-6741 2077-9917 reponame:Revistas - Universidad Nacional de Trujillo instname:Universidad Nacional de Trujillo instacron:UNITRU |
| instname_str |
Universidad Nacional de Trujillo |
| instacron_str |
UNITRU |
| institution |
UNITRU |
| reponame_str |
Revistas - Universidad Nacional de Trujillo |
| collection |
Revistas - Universidad Nacional de Trujillo |
| repository.name.fl_str_mv |
|
| repository.mail.fl_str_mv |
|
| _version_ |
1846521098266476544 |
| score |
13.040751 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).