Estimation of nitrogen content in sugarcane based on vegetation indices derived from Sentinel-2 data

Descripción del Articulo

Sugarcane occupies a large territorial scale in the world and is constantly searching for mechanisms to monitor nutrients in the crop production cycle, using non-destructive methods. The study aimed to estimate the nitrogen content in the sugarcane leaf was developed in the 2021/2022 harvest on two...

Descripción completa

Detalles Bibliográficos
Autores: Filho, Jose Neto Soares, Pereira, Douglas Endrigo Perez, Noronha, Amanda Soares Regis
Formato: artículo
Fecha de Publicación:2025
Institución:Universidad Nacional de Trujillo
Repositorio:Revistas - Universidad Nacional de Trujillo
Lenguaje:portugués
OAI Identifier:oai:ojs.revistas.unitru.edu.pe:article/6200
Enlace del recurso:https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/6200
Nivel de acceso:acceso abierto
Materia:agro-modelo
cultivares
dossel
sensoriamento remoto
inteligencia artificial
agro-model
canopy
remote sensing
artificial intelligence
Descripción
Sumario:Sugarcane occupies a large territorial scale in the world and is constantly searching for mechanisms to monitor nutrients in the crop production cycle, using non-destructive methods. The study aimed to estimate the nitrogen content in the sugarcane leaf was developed in the 2021/2022 harvest on two commercial fields of dryland cultivars (RB867515 = 50.75 ha) and (CVSP7870 = 48.56 ha) at the Serranópolis-Goiás mill, evaluating the efficiency of the biochemical vegetation indices Fraction of Absorbed Photosynthetically Active Radiation (fAPAR) and Canopy Chlorophyll Content (CCC) processed using the radiation transfer model RTM PROSAIL, compared to the Normalized Difference Vegetation Index (NDVI) and Green Normalized Difference Vegetation Index (GNDVI), processed using mathematical band ratio models. Both were based on a time series of Sentinel-2 data as input variables. The validation of the Agro-Model occurred through analysis of leaf tissue collected in seven interspersed evaluations during the period the crop remained in the field. The functionality of the four indexes was evidenced, highlighting the biochemical index fAPAR from the perspective of descriptive statistics (R² = 0.970 and RMSE = 0.46) for the cultivar RB867515 and (R² = 0.940 and RMSE = 0.69) for the cultivar CVSP7870.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).