Eigen-concepts in the multiplicative linear algebra context

Descripción del Articulo

The concept of eigenvalues is associated with the linearity one, through the structure of vectorial space. The multiplicative linear algebra is a structure in which an expression such as x^3y^2 can be considered a linear combination of variables x and y. This article is reserved to show the correspo...

Descripción completa

Detalles Bibliográficos
Autores: Córdova-Lepe, Fernando, Lara-Muñoz, Franco, Hernández-Castañeda, Ranghely, Gutiérrez, Rodrigo
Formato: artículo
Fecha de Publicación:2025
Institución:Universidad Nacional de Trujillo
Repositorio:Revistas - Universidad Nacional de Trujillo
Lenguaje:inglés
OAI Identifier:oai:ojs.revistas.unitru.edu.pe:article/6630
Enlace del recurso:https://revistas.unitru.edu.pe/index.php/SSMM/article/view/6630
Nivel de acceso:acceso abierto
Materia:Linearity concept
multiplicative linear algebra
multiplicative linear maps
Concepto de linealidad
álgebra lineal multiplicativa
aplicaciones lineales multiplicativas
id REVUNITRU_7f5ddd22062e3783d9f75b6bde4123d3
oai_identifier_str oai:ojs.revistas.unitru.edu.pe:article/6630
network_acronym_str REVUNITRU
network_name_str Revistas - Universidad Nacional de Trujillo
repository_id_str
spelling Eigen-concepts in the multiplicative linear algebra context Autoconceptos en el contexto del álgebra lineal multiplicativaEigen-concepts in the multiplicative linear algebra context Córdova-Lepe, FernandoLara-Muñoz, FrancoHernández-Castañeda, RanghelyGutiérrez, RodrigoLinearity conceptmultiplicative linear algebramultiplicative linear mapsConcepto de linealidadálgebra lineal multiplicativaaplicaciones lineales multiplicativasLinearity conceptmultiplicative linear algebramultiplicative linear mapsThe concept of eigenvalues is associated with the linearity one, through the structure of vectorial space. The multiplicative linear algebra is a structure in which an expression such as x^3y^2 can be considered a linear combination of variables x and y. This article is reserved to show the corresponding analogues for an Eigenvalue Theory. We exemplify its applications by introducing a connection with the analysis of a nonlinear dynamical system in the standard sense, although a linear recurrence in the multiplicative one.El concepto de valores propios está asociado al de linealidad, a través de la estructura del espacio vectorial. El álgebra lineal multiplicativa es una estructura en la que una expresión como x^3y^2 puede ser considerada una combinación lineal de las variables x y y. Este artículo está destinado a mostrar los análogos correspondientes para una teoría de valores propios en este contexto. Se ejemplifican sus aplicaciones mediante la introducción de una conexión con el análisis de un sistema dinámico no lineal en el sentido estándar, aunque con una recurrencia lineal en el marco multiplicativo.The concept of eigenvalues is associated with the linearity one, through the structure of vectorial space. The multiplicative linear algebra is a structure in which an expression such as x^3y^2 can be considered a linear combination of variables x and y. This article is reserved to show the corresponding analogues for an Eigenvalue Theory. We exemplify its applications by introducing a connection with the analysis of a nonlinear dynamical system in the standard sense, although a linear recurrence in the multiplicative one.National University of Trujillo - Academic Department of Mathematics2025-07-26info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://revistas.unitru.edu.pe/index.php/SSMM/article/view/6630Selecciones Matemáticas; Vol. 12 No. 01 (2025): January - July; 142 - 154Selecciones Matemáticas; Vol. 12 Núm. 01 (2025): Enero - Julio; 142 - 154Selecciones Matemáticas; v. 12 n. 01 (2025): Janeiro - Julho; 142 - 1542411-1783reponame:Revistas - Universidad Nacional de Trujilloinstname:Universidad Nacional de Trujilloinstacron:UNITRUenghttps://revistas.unitru.edu.pe/index.php/SSMM/article/view/6630/6863https://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessoai:ojs.revistas.unitru.edu.pe:article/66302025-07-26T15:43:48Z
dc.title.none.fl_str_mv Eigen-concepts in the multiplicative linear algebra context
Autoconceptos en el contexto del álgebra lineal multiplicativa
Eigen-concepts in the multiplicative linear algebra context
title Eigen-concepts in the multiplicative linear algebra context
spellingShingle Eigen-concepts in the multiplicative linear algebra context
Córdova-Lepe, Fernando
Linearity concept
multiplicative linear algebra
multiplicative linear maps
Concepto de linealidad
álgebra lineal multiplicativa
aplicaciones lineales multiplicativas
Linearity concept
multiplicative linear algebra
multiplicative linear maps
title_short Eigen-concepts in the multiplicative linear algebra context
title_full Eigen-concepts in the multiplicative linear algebra context
title_fullStr Eigen-concepts in the multiplicative linear algebra context
title_full_unstemmed Eigen-concepts in the multiplicative linear algebra context
title_sort Eigen-concepts in the multiplicative linear algebra context
dc.creator.none.fl_str_mv Córdova-Lepe, Fernando
Lara-Muñoz, Franco
Hernández-Castañeda, Ranghely
Gutiérrez, Rodrigo
author Córdova-Lepe, Fernando
author_facet Córdova-Lepe, Fernando
Lara-Muñoz, Franco
Hernández-Castañeda, Ranghely
Gutiérrez, Rodrigo
author_role author
author2 Lara-Muñoz, Franco
Hernández-Castañeda, Ranghely
Gutiérrez, Rodrigo
author2_role author
author
author
dc.subject.none.fl_str_mv Linearity concept
multiplicative linear algebra
multiplicative linear maps
Concepto de linealidad
álgebra lineal multiplicativa
aplicaciones lineales multiplicativas
Linearity concept
multiplicative linear algebra
multiplicative linear maps
topic Linearity concept
multiplicative linear algebra
multiplicative linear maps
Concepto de linealidad
álgebra lineal multiplicativa
aplicaciones lineales multiplicativas
Linearity concept
multiplicative linear algebra
multiplicative linear maps
description The concept of eigenvalues is associated with the linearity one, through the structure of vectorial space. The multiplicative linear algebra is a structure in which an expression such as x^3y^2 can be considered a linear combination of variables x and y. This article is reserved to show the corresponding analogues for an Eigenvalue Theory. We exemplify its applications by introducing a connection with the analysis of a nonlinear dynamical system in the standard sense, although a linear recurrence in the multiplicative one.
publishDate 2025
dc.date.none.fl_str_mv 2025-07-26
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv https://revistas.unitru.edu.pe/index.php/SSMM/article/view/6630
url https://revistas.unitru.edu.pe/index.php/SSMM/article/view/6630
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://revistas.unitru.edu.pe/index.php/SSMM/article/view/6630/6863
dc.rights.none.fl_str_mv https://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv National University of Trujillo - Academic Department of Mathematics
publisher.none.fl_str_mv National University of Trujillo - Academic Department of Mathematics
dc.source.none.fl_str_mv Selecciones Matemáticas; Vol. 12 No. 01 (2025): January - July; 142 - 154
Selecciones Matemáticas; Vol. 12 Núm. 01 (2025): Enero - Julio; 142 - 154
Selecciones Matemáticas; v. 12 n. 01 (2025): Janeiro - Julho; 142 - 154
2411-1783
reponame:Revistas - Universidad Nacional de Trujillo
instname:Universidad Nacional de Trujillo
instacron:UNITRU
instname_str Universidad Nacional de Trujillo
instacron_str UNITRU
institution UNITRU
reponame_str Revistas - Universidad Nacional de Trujillo
collection Revistas - Universidad Nacional de Trujillo
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1847155319718805504
score 13.42111
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).