Integration of Monomials over the Unit Sphere and Unit Ball in Rn

Descripción del Articulo

We compute the integral of monomials of the form x^2β over the unit sphere and the unit ball in R^n where β = (β1, . . . , βn) is a multi–index with real components βk > −1/2, 1 ≤ k ≤ n, and discuss their asymptotic behavior as some, or all, βk → ∞. This allows for...

Descripción completa

Detalles Bibliográficos
Autores: Calderón, Calixto P., Torchinsky, Alberto
Formato: artículo
Fecha de Publicación:2025
Institución:Universidad Nacional de Trujillo
Repositorio:Revistas - Universidad Nacional de Trujillo
Lenguaje:inglés
OAI Identifier:oai:ojs.revistas.unitru.edu.pe:article/6616
Enlace del recurso:https://revistas.unitru.edu.pe/index.php/SSMM/article/view/6616
Nivel de acceso:acceso abierto
Materia:Integration over the Unit Sphere in R^n
Integration over the Unit Ball in R^n
id REVUNITRU_7c3e5a530fcbb33c6f111baab44cf65c
oai_identifier_str oai:ojs.revistas.unitru.edu.pe:article/6616
network_acronym_str REVUNITRU
network_name_str Revistas - Universidad Nacional de Trujillo
repository_id_str
spelling Integration of Monomials over the Unit Sphere and Unit Ball in RnIntegration of Monomials over the Unit Sphere and Unit Ball in RnIntegration of Monomials over the Unit Sphere and Unit Ball in RnCalderón, Calixto P.Torchinsky, AlbertoIntegration over the Unit Sphere in R^nIntegration over the Unit Ball in R^nIntegration over the Unit Sphere in R^nIntegration over the Unit Ball in R^nIntegration over the Unit Sphere in R^nIntegration over the Unit Ball in R^nWe compute the integral of monomials of the form x^2β over the unit sphere and the unit ball in R^n where β = (β1, . . . , βn) is a multi–index with real components βk > −1/2, 1 ≤ k ≤ n, and discuss their asymptotic behavior as some, or all, βk → ∞. This allows for the evaluation of integrals involving circular and hyperbolic trigonometric functions over the unit sphere and the unit ball in Rn. We also consider the Fourier transform of monomials xα restricted to the unit sphere in Rn, where the multi–indices α have integer components, and discuss their behaviour at the origin.National University of Trujillo - Academic Department of Mathematics2025-07-26info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://revistas.unitru.edu.pe/index.php/SSMM/article/view/6616Selecciones Matemáticas; Vol. 12 No. 01 (2025): January - July; 1 - 14Selecciones Matemáticas; Vol. 12 Núm. 01 (2025): Enero - Julio; 1 - 14Selecciones Matemáticas; v. 12 n. 01 (2025): Janeiro - Julho; 1 - 142411-1783reponame:Revistas - Universidad Nacional de Trujilloinstname:Universidad Nacional de Trujilloinstacron:UNITRUenghttps://revistas.unitru.edu.pe/index.php/SSMM/article/view/6616/6852https://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessoai:ojs.revistas.unitru.edu.pe:article/66162025-07-26T15:43:48Z
dc.title.none.fl_str_mv Integration of Monomials over the Unit Sphere and Unit Ball in Rn
Integration of Monomials over the Unit Sphere and Unit Ball in Rn
Integration of Monomials over the Unit Sphere and Unit Ball in Rn
title Integration of Monomials over the Unit Sphere and Unit Ball in Rn
spellingShingle Integration of Monomials over the Unit Sphere and Unit Ball in Rn
Calderón, Calixto P.
Integration over the Unit Sphere in R^n
Integration over the Unit Ball in R^n
Integration over the Unit Sphere in R^n
Integration over the Unit Ball in R^n
Integration over the Unit Sphere in R^n
Integration over the Unit Ball in R^n
title_short Integration of Monomials over the Unit Sphere and Unit Ball in Rn
title_full Integration of Monomials over the Unit Sphere and Unit Ball in Rn
title_fullStr Integration of Monomials over the Unit Sphere and Unit Ball in Rn
title_full_unstemmed Integration of Monomials over the Unit Sphere and Unit Ball in Rn
title_sort Integration of Monomials over the Unit Sphere and Unit Ball in Rn
dc.creator.none.fl_str_mv Calderón, Calixto P.
Torchinsky, Alberto
author Calderón, Calixto P.
author_facet Calderón, Calixto P.
Torchinsky, Alberto
author_role author
author2 Torchinsky, Alberto
author2_role author
dc.subject.none.fl_str_mv Integration over the Unit Sphere in R^n
Integration over the Unit Ball in R^n
Integration over the Unit Sphere in R^n
Integration over the Unit Ball in R^n
Integration over the Unit Sphere in R^n
Integration over the Unit Ball in R^n
topic Integration over the Unit Sphere in R^n
Integration over the Unit Ball in R^n
Integration over the Unit Sphere in R^n
Integration over the Unit Ball in R^n
Integration over the Unit Sphere in R^n
Integration over the Unit Ball in R^n
description We compute the integral of monomials of the form x^2β over the unit sphere and the unit ball in R^n where β = (β1, . . . , βn) is a multi–index with real components βk > −1/2, 1 ≤ k ≤ n, and discuss their asymptotic behavior as some, or all, βk → ∞. This allows for the evaluation of integrals involving circular and hyperbolic trigonometric functions over the unit sphere and the unit ball in Rn. We also consider the Fourier transform of monomials xα restricted to the unit sphere in Rn, where the multi–indices α have integer components, and discuss their behaviour at the origin.
publishDate 2025
dc.date.none.fl_str_mv 2025-07-26
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv https://revistas.unitru.edu.pe/index.php/SSMM/article/view/6616
url https://revistas.unitru.edu.pe/index.php/SSMM/article/view/6616
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://revistas.unitru.edu.pe/index.php/SSMM/article/view/6616/6852
dc.rights.none.fl_str_mv https://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv National University of Trujillo - Academic Department of Mathematics
publisher.none.fl_str_mv National University of Trujillo - Academic Department of Mathematics
dc.source.none.fl_str_mv Selecciones Matemáticas; Vol. 12 No. 01 (2025): January - July; 1 - 14
Selecciones Matemáticas; Vol. 12 Núm. 01 (2025): Enero - Julio; 1 - 14
Selecciones Matemáticas; v. 12 n. 01 (2025): Janeiro - Julho; 1 - 14
2411-1783
reponame:Revistas - Universidad Nacional de Trujillo
instname:Universidad Nacional de Trujillo
instacron:UNITRU
instname_str Universidad Nacional de Trujillo
instacron_str UNITRU
institution UNITRU
reponame_str Revistas - Universidad Nacional de Trujillo
collection Revistas - Universidad Nacional de Trujillo
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1841449185092567040
score 13.439101
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).