Analysis of a delayed mathematical model for tumor-immune cell interactions with Holling type II functional response

Descripción del Articulo

In this study, we analyzed a three-dimensional nonlinear differential system considering Holling type II functional response that describes the dynamics of tumor cells, cytotoxic T lymphocytes, and helper T cells, with a single interaction delay. The linear stability of the internal equilibrium poin...

Descripción completa

Detalles Bibliográficos
Autor: Medina Diaz, John
Formato: artículo
Fecha de Publicación:2023
Institución:Universidad Nacional de Trujillo
Repositorio:Revistas - Universidad Nacional de Trujillo
Lenguaje:inglés
OAI Identifier:oai:ojs.revistas.unitru.edu.pe:article/5670
Enlace del recurso:https://revistas.unitru.edu.pe/index.php/SSMM/article/view/5670
Nivel de acceso:acceso abierto
Materia:Cancer
holling functional response
Hopf bifurcation
Delay differential equation
Descripción
Sumario:In this study, we analyzed a three-dimensional nonlinear differential system considering Holling type II functional response that describes the dynamics of tumor cells, cytotoxic T lymphocytes, and helper T cells, with a single interaction delay. The linear stability of the internal equilibrium point and the presence of the Hopf bifurcation are examined, with the discrete time delay serving as the bifurcation parameter. To demonstrate the rich dynamic behavior of the model, we present numerical simulations with various values of the time delay τ and the attack rate of cytotoxic T lymphocytes on tumor cells (α1). These simulations exhibit the presence of periodic oscillations and tumor death with survival of the mentioned immune cells, for all α1 greater than a fixed threshold with or without delay.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).