STABILITY OF LINEAR SYSTEMS WITH MARKOVIAN JUMPS
Descripción del Articulo
In this work we will analyze the stability of linear systems governed by a Markov chain, this family is known in the specialized literature as linear systems with Markov jumps or by its acronyms in English MJLS as it is denoted in [1]. Linear systems governed by a Markov chain are dynamic systems wi...
Autor: | |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2016 |
Institución: | Universidad Nacional de Trujillo |
Repositorio: | Revistas - Universidad Nacional de Trujillo |
Lenguaje: | español |
OAI Identifier: | oai:ojs.revistas.unitru.edu.pe:article/1254 |
Enlace del recurso: | https://revistas.unitru.edu.pe/index.php/SSMM/article/view/1254 |
Nivel de acceso: | acceso abierto |
Materia: | Linear systems with Markov jumps stability Markov chains Sistemas lineales con saltos markovianos estabilidad cadenas de Markov |
id |
REVUNITRU_557616689e3d2fa5cba91792ea6f3cab |
---|---|
oai_identifier_str |
oai:ojs.revistas.unitru.edu.pe:article/1254 |
network_acronym_str |
REVUNITRU |
network_name_str |
Revistas - Universidad Nacional de Trujillo |
repository_id_str |
|
spelling |
STABILITY OF LINEAR SYSTEMS WITH MARKOVIAN JUMPSESTABILIDAD DE LOS SISTEMAS LINEALES CON SALTOS MARKOVIANOSMayta Guillermo, Jorge EnriqueLinear systems with Markov jumpsstabilityMarkov chainsSistemas lineales con saltos markovianosestabilidadcadenas de MarkovIn this work we will analyze the stability of linear systems governed by a Markov chain, this family is known in the specialized literature as linear systems with Markov jumps or by its acronyms in English MJLS as it is denoted in [1]. Linear systems governed by a Markov chain are dynamic systems with abrupt changes. We give some denitions of stability for the MJLS system, where these types of stability are equivalent as long as the state space of the Markov chain is finite.Finally we present a theorem that characterizes the stochastic stability by means of an equation of the Lyapunov type. The result is a generalization of a theorem in classical theory.En este trabajo analizaremos la estabilidad de los sistemas lineales gobernados por una cadena de Markov, esta familia es conocida en la literatura especializada como sistemas lineales con saltos markovianos o por sus siglas en ingles MJLS como se denota en [1]. Los sistemas lineales gobernados por una cadena de Markov son sistemas dinámicos que presentan cambios abruptos. Damos algunas deniciones de estabilidad para el sistema MJLS, donde estos tipos de estabilidad sonequivalentes siempre y cuando el espacio de estados de la cadena de Markov es finito. Por ultimo, presentamos un teorema que caracteriza la estabilidad estocástica mediante una ecuación del tipo Lyapunov. El resultado que se presenta es una generalización de un teorema en la teoría clásica.National University of Trujillo - Academic Department of Mathematics2016-12-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdftext/htmlhttps://revistas.unitru.edu.pe/index.php/SSMM/article/view/1254Selecciones Matemáticas; Vol. 3 No. 02 (2016): August - December; 76-82Selecciones Matemáticas; Vol. 3 Núm. 02 (2016): Agosto - Diciembre; 76-82Selecciones Matemáticas; v. 3 n. 02 (2016): Agosto - Diciembre; 76-822411-178310.17268/ssmm.v3i02reponame:Revistas - Universidad Nacional de Trujilloinstname:Universidad Nacional de Trujilloinstacron:UNITRUspahttps://revistas.unitru.edu.pe/index.php/SSMM/article/view/1254/2369https://revistas.unitru.edu.pe/index.php/SSMM/article/view/1254/2370Derechos de autor 2017 Selecciones Matemáticasinfo:eu-repo/semantics/openAccessoai:ojs.revistas.unitru.edu.pe:article/12542022-10-21T18:55:03Z |
dc.title.none.fl_str_mv |
STABILITY OF LINEAR SYSTEMS WITH MARKOVIAN JUMPS ESTABILIDAD DE LOS SISTEMAS LINEALES CON SALTOS MARKOVIANOS |
title |
STABILITY OF LINEAR SYSTEMS WITH MARKOVIAN JUMPS |
spellingShingle |
STABILITY OF LINEAR SYSTEMS WITH MARKOVIAN JUMPS Mayta Guillermo, Jorge Enrique Linear systems with Markov jumps stability Markov chains Sistemas lineales con saltos markovianos estabilidad cadenas de Markov |
title_short |
STABILITY OF LINEAR SYSTEMS WITH MARKOVIAN JUMPS |
title_full |
STABILITY OF LINEAR SYSTEMS WITH MARKOVIAN JUMPS |
title_fullStr |
STABILITY OF LINEAR SYSTEMS WITH MARKOVIAN JUMPS |
title_full_unstemmed |
STABILITY OF LINEAR SYSTEMS WITH MARKOVIAN JUMPS |
title_sort |
STABILITY OF LINEAR SYSTEMS WITH MARKOVIAN JUMPS |
dc.creator.none.fl_str_mv |
Mayta Guillermo, Jorge Enrique |
author |
Mayta Guillermo, Jorge Enrique |
author_facet |
Mayta Guillermo, Jorge Enrique |
author_role |
author |
dc.subject.none.fl_str_mv |
Linear systems with Markov jumps stability Markov chains Sistemas lineales con saltos markovianos estabilidad cadenas de Markov |
topic |
Linear systems with Markov jumps stability Markov chains Sistemas lineales con saltos markovianos estabilidad cadenas de Markov |
description |
In this work we will analyze the stability of linear systems governed by a Markov chain, this family is known in the specialized literature as linear systems with Markov jumps or by its acronyms in English MJLS as it is denoted in [1]. Linear systems governed by a Markov chain are dynamic systems with abrupt changes. We give some denitions of stability for the MJLS system, where these types of stability are equivalent as long as the state space of the Markov chain is finite.Finally we present a theorem that characterizes the stochastic stability by means of an equation of the Lyapunov type. The result is a generalization of a theorem in classical theory. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-12-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
https://revistas.unitru.edu.pe/index.php/SSMM/article/view/1254 |
url |
https://revistas.unitru.edu.pe/index.php/SSMM/article/view/1254 |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.relation.none.fl_str_mv |
https://revistas.unitru.edu.pe/index.php/SSMM/article/view/1254/2369 https://revistas.unitru.edu.pe/index.php/SSMM/article/view/1254/2370 |
dc.rights.none.fl_str_mv |
Derechos de autor 2017 Selecciones Matemáticas info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Derechos de autor 2017 Selecciones Matemáticas |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf text/html |
dc.publisher.none.fl_str_mv |
National University of Trujillo - Academic Department of Mathematics |
publisher.none.fl_str_mv |
National University of Trujillo - Academic Department of Mathematics |
dc.source.none.fl_str_mv |
Selecciones Matemáticas; Vol. 3 No. 02 (2016): August - December; 76-82 Selecciones Matemáticas; Vol. 3 Núm. 02 (2016): Agosto - Diciembre; 76-82 Selecciones Matemáticas; v. 3 n. 02 (2016): Agosto - Diciembre; 76-82 2411-1783 10.17268/ssmm.v3i02 reponame:Revistas - Universidad Nacional de Trujillo instname:Universidad Nacional de Trujillo instacron:UNITRU |
instname_str |
Universidad Nacional de Trujillo |
instacron_str |
UNITRU |
institution |
UNITRU |
reponame_str |
Revistas - Universidad Nacional de Trujillo |
collection |
Revistas - Universidad Nacional de Trujillo |
repository.name.fl_str_mv |
|
repository.mail.fl_str_mv |
|
_version_ |
1844618543499313152 |
score |
13.408949 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).