Identification of the phytosanitary status of trees using machine learning and very high spatial resolution images

Descripción del Articulo

Tree diseases contribute to significant economic and food losses in the agricultural sector. Early detection of phytosanitary problems in trees with non-destructive methods is essential to guarantee sustainable orange production. This study presents the findings of a designed methodology conducted t...

Descripción completa

Detalles Bibliográficos
Autores: Díaz Rivera, Juan Carlos, Aguirre-Salado, Carlos Arturo, Loredo-Osti, Catarina, Escoto-Rodríguez, Martín
Formato: artículo
Fecha de Publicación:2024
Institución:Universidad Nacional de Trujillo
Repositorio:Revistas - Universidad Nacional de Trujillo
Lenguaje:español
OAI Identifier:oai:ojs.revistas.unitru.edu.pe:article/5390
Enlace del recurso:https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/5390
Nivel de acceso:acceso abierto
Materia:agricultura de precisión
árboles enfermos
cítricos; naranja
México
vehículo aéreo no tripulado
precision agriculture
sick trees
citrus
Orange
Mexico
Unmanned aerial vehicle
id REVUNITRU_4c4b0bbdf4933bb8947f20c5a79264aa
oai_identifier_str oai:ojs.revistas.unitru.edu.pe:article/5390
network_acronym_str REVUNITRU
network_name_str Revistas - Universidad Nacional de Trujillo
repository_id_str
dc.title.none.fl_str_mv Identification of the phytosanitary status of trees using machine learning and very high spatial resolution images
Identificación del estado fitosanitario de árboles mediante aprendizaje automático e imágenes de muy alta resolución espacial
title Identification of the phytosanitary status of trees using machine learning and very high spatial resolution images
spellingShingle Identification of the phytosanitary status of trees using machine learning and very high spatial resolution images
Díaz Rivera, Juan Carlos
agricultura de precisión
árboles enfermos
cítricos; naranja
México
vehículo aéreo no tripulado
precision agriculture
sick trees
citrus
Orange
Mexico
Unmanned aerial vehicle
title_short Identification of the phytosanitary status of trees using machine learning and very high spatial resolution images
title_full Identification of the phytosanitary status of trees using machine learning and very high spatial resolution images
title_fullStr Identification of the phytosanitary status of trees using machine learning and very high spatial resolution images
title_full_unstemmed Identification of the phytosanitary status of trees using machine learning and very high spatial resolution images
title_sort Identification of the phytosanitary status of trees using machine learning and very high spatial resolution images
dc.creator.none.fl_str_mv Díaz Rivera, Juan Carlos
Aguirre-Salado, Carlos Arturo
Loredo-Osti, Catarina
Escoto-Rodríguez, Martín
author Díaz Rivera, Juan Carlos
author_facet Díaz Rivera, Juan Carlos
Aguirre-Salado, Carlos Arturo
Loredo-Osti, Catarina
Escoto-Rodríguez, Martín
author_role author
author2 Aguirre-Salado, Carlos Arturo
Loredo-Osti, Catarina
Escoto-Rodríguez, Martín
author2_role author
author
author
dc.subject.none.fl_str_mv agricultura de precisión
árboles enfermos
cítricos; naranja
México
vehículo aéreo no tripulado
precision agriculture
sick trees
citrus
Orange
Mexico
Unmanned aerial vehicle
topic agricultura de precisión
árboles enfermos
cítricos; naranja
México
vehículo aéreo no tripulado
precision agriculture
sick trees
citrus
Orange
Mexico
Unmanned aerial vehicle
description Tree diseases contribute to significant economic and food losses in the agricultural sector. Early detection of phytosanitary problems in trees with non-destructive methods is essential to guarantee sustainable orange production. This study presents the findings of a designed methodology conducted to identify diseased orange trees in an orchard situated in the citrus belt of Mexico, specifically in the Rioverde region of San Luis Potosi. To accomplish this, we captured images using a multispectral camera with very high spatial resolution, which was mounted on an unmanned aerial vehicle. These images were used to construct a georeferenced orthomosaic of the orchard. Six thematic classes were established to distinguish various health levels among the trees. We employed several supervised classification algorithms at the pixel level, including Random Forest (RF), K-Nearest Neighbor (KNN), Spectral Angle Mapper (SAM), Support Vector Machine (SVM), and Maximum Likelihood (ML). Considering the classification accuracy achieved by each algorithm, they can be ranked as follows: Maximum Likelihood (ML) with 88.10%, Support Vector Machine (SVM) with 77.38%, Spectral Angle Mapper (SAM) with 76.19%, K-Nearest Neighbor (KNN) with 64.68%, and Random Forest (RF) with 61.90%. These results successfully identified the phytosanitary status of all the trees in the orchard with an acceptable level of accuracy, providing valuable management information for the grower.
publishDate 2024
dc.date.none.fl_str_mv 2024-04-08
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/5390
url https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/5390
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/5390/5908
https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/5390/6622
dc.rights.none.fl_str_mv Derechos de autor 2024 Scientia Agropecuaria
https://creativecommons.org/licenses/by-nc/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Derechos de autor 2024 Scientia Agropecuaria
https://creativecommons.org/licenses/by-nc/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
text/html
dc.publisher.none.fl_str_mv Universidad Nacional de Trujillo
publisher.none.fl_str_mv Universidad Nacional de Trujillo
dc.source.none.fl_str_mv Scientia Agropecuaria; Vol. 15 Núm. 2 (2024): Abril - Junio; 177-189
Scientia Agropecuaria; Vol. 15 No. 2 (2024): Abril - Junio; 177-189
2306-6741
2077-9917
reponame:Revistas - Universidad Nacional de Trujillo
instname:Universidad Nacional de Trujillo
instacron:UNITRU
instname_str Universidad Nacional de Trujillo
instacron_str UNITRU
institution UNITRU
reponame_str Revistas - Universidad Nacional de Trujillo
collection Revistas - Universidad Nacional de Trujillo
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1843350190205960192
spelling Identification of the phytosanitary status of trees using machine learning and very high spatial resolution imagesIdentificación del estado fitosanitario de árboles mediante aprendizaje automático e imágenes de muy alta resolución espacialDíaz Rivera, Juan CarlosAguirre-Salado, Carlos Arturo Loredo-Osti, Catarina Escoto-Rodríguez, Martín agricultura de precisiónárboles enfermoscítricos; naranjaMéxicovehículo aéreo no tripuladoprecision agriculturesick treescitrusOrangeMexicoUnmanned aerial vehicleTree diseases contribute to significant economic and food losses in the agricultural sector. Early detection of phytosanitary problems in trees with non-destructive methods is essential to guarantee sustainable orange production. This study presents the findings of a designed methodology conducted to identify diseased orange trees in an orchard situated in the citrus belt of Mexico, specifically in the Rioverde region of San Luis Potosi. To accomplish this, we captured images using a multispectral camera with very high spatial resolution, which was mounted on an unmanned aerial vehicle. These images were used to construct a georeferenced orthomosaic of the orchard. Six thematic classes were established to distinguish various health levels among the trees. We employed several supervised classification algorithms at the pixel level, including Random Forest (RF), K-Nearest Neighbor (KNN), Spectral Angle Mapper (SAM), Support Vector Machine (SVM), and Maximum Likelihood (ML). Considering the classification accuracy achieved by each algorithm, they can be ranked as follows: Maximum Likelihood (ML) with 88.10%, Support Vector Machine (SVM) with 77.38%, Spectral Angle Mapper (SAM) with 76.19%, K-Nearest Neighbor (KNN) with 64.68%, and Random Forest (RF) with 61.90%. These results successfully identified the phytosanitary status of all the trees in the orchard with an acceptable level of accuracy, providing valuable management information for the grower.Las enfermedades de los árboles contribuyen a importantes pérdidas económicas y de alimentos en el sector agrícola. La detección temprana de problemas fitosanitarios en árboles con métodos no destructivos resulta fundamental para garantizar la producción sostenible de naranja. Este trabajo presenta los resultados de una metodología diseñada para la identificación de árboles de naranja enfermos en una huerta ubicada en el cinturón citrícola de México, particularmente en la región de Rioverde, San Luis Potosí. Para ello, se tomaron imágenes con una cámara multiespectral de muy alta resolución espacial instalada en un vehículo aéreo no tripulado con las que se construyó un ortomosaico georreferenciado. Se emplearon seis clases temáticas para identificar los diferentes niveles de sanidad. Se utilizaron diferentes algoritmos de clasificación supervisada a nivel píxel que incluyen Random Forest (RF), K-Nearest Neighbor (KNN), Spectral Angle Mapper (SAM), Support Vector Machine (SVM), y Maximum Likelihood (ML). Considerando la exactitud de clasificación obtenida por cada uno de los algoritmos, se pueden ordenar de la siguiente manera: Maximum Likelihood (ML) con un 88,10%, Support Vector Machine (SVM) con un 77,38%, Spectral Angle Mapper (SAM) con un 76,19%, K-Nearest Neighbor (KNN) con un 64,68% y Random Forest (RF) con un 61,90%. Los resultados permitieron identificar el estado fitosanitario de todos los árboles de la huerta, con una exactitud aceptable y representan información valiosa de manejo para el productor.Universidad Nacional de Trujillo2024-04-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdftext/htmlhttps://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/5390Scientia Agropecuaria; Vol. 15 Núm. 2 (2024): Abril - Junio; 177-189Scientia Agropecuaria; Vol. 15 No. 2 (2024): Abril - Junio; 177-1892306-67412077-9917reponame:Revistas - Universidad Nacional de Trujilloinstname:Universidad Nacional de Trujilloinstacron:UNITRUspahttps://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/5390/5908https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/5390/6622Derechos de autor 2024 Scientia Agropecuariahttps://creativecommons.org/licenses/by-nc/4.0info:eu-repo/semantics/openAccessoai:ojs.revistas.unitru.edu.pe:article/53902024-03-27T12:46:48Z
score 12.873224
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).