Identification of the phytosanitary status of trees using machine learning and very high spatial resolution images
Descripción del Articulo
Tree diseases contribute to significant economic and food losses in the agricultural sector. Early detection of phytosanitary problems in trees with non-destructive methods is essential to guarantee sustainable orange production. This study presents the findings of a designed methodology conducted t...
Autores: | , , , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2024 |
Institución: | Universidad Nacional de Trujillo |
Repositorio: | Revistas - Universidad Nacional de Trujillo |
Lenguaje: | español |
OAI Identifier: | oai:ojs.revistas.unitru.edu.pe:article/5390 |
Enlace del recurso: | https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/5390 |
Nivel de acceso: | acceso abierto |
Materia: | agricultura de precisión árboles enfermos cítricos; naranja México vehículo aéreo no tripulado precision agriculture sick trees citrus Orange Mexico Unmanned aerial vehicle |
id |
REVUNITRU_4c4b0bbdf4933bb8947f20c5a79264aa |
---|---|
oai_identifier_str |
oai:ojs.revistas.unitru.edu.pe:article/5390 |
network_acronym_str |
REVUNITRU |
network_name_str |
Revistas - Universidad Nacional de Trujillo |
repository_id_str |
|
dc.title.none.fl_str_mv |
Identification of the phytosanitary status of trees using machine learning and very high spatial resolution images Identificación del estado fitosanitario de árboles mediante aprendizaje automático e imágenes de muy alta resolución espacial |
title |
Identification of the phytosanitary status of trees using machine learning and very high spatial resolution images |
spellingShingle |
Identification of the phytosanitary status of trees using machine learning and very high spatial resolution images Díaz Rivera, Juan Carlos agricultura de precisión árboles enfermos cítricos; naranja México vehículo aéreo no tripulado precision agriculture sick trees citrus Orange Mexico Unmanned aerial vehicle |
title_short |
Identification of the phytosanitary status of trees using machine learning and very high spatial resolution images |
title_full |
Identification of the phytosanitary status of trees using machine learning and very high spatial resolution images |
title_fullStr |
Identification of the phytosanitary status of trees using machine learning and very high spatial resolution images |
title_full_unstemmed |
Identification of the phytosanitary status of trees using machine learning and very high spatial resolution images |
title_sort |
Identification of the phytosanitary status of trees using machine learning and very high spatial resolution images |
dc.creator.none.fl_str_mv |
Díaz Rivera, Juan Carlos Aguirre-Salado, Carlos Arturo Loredo-Osti, Catarina Escoto-Rodríguez, Martín |
author |
Díaz Rivera, Juan Carlos |
author_facet |
Díaz Rivera, Juan Carlos Aguirre-Salado, Carlos Arturo Loredo-Osti, Catarina Escoto-Rodríguez, Martín |
author_role |
author |
author2 |
Aguirre-Salado, Carlos Arturo Loredo-Osti, Catarina Escoto-Rodríguez, Martín |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
agricultura de precisión árboles enfermos cítricos; naranja México vehículo aéreo no tripulado precision agriculture sick trees citrus Orange Mexico Unmanned aerial vehicle |
topic |
agricultura de precisión árboles enfermos cítricos; naranja México vehículo aéreo no tripulado precision agriculture sick trees citrus Orange Mexico Unmanned aerial vehicle |
description |
Tree diseases contribute to significant economic and food losses in the agricultural sector. Early detection of phytosanitary problems in trees with non-destructive methods is essential to guarantee sustainable orange production. This study presents the findings of a designed methodology conducted to identify diseased orange trees in an orchard situated in the citrus belt of Mexico, specifically in the Rioverde region of San Luis Potosi. To accomplish this, we captured images using a multispectral camera with very high spatial resolution, which was mounted on an unmanned aerial vehicle. These images were used to construct a georeferenced orthomosaic of the orchard. Six thematic classes were established to distinguish various health levels among the trees. We employed several supervised classification algorithms at the pixel level, including Random Forest (RF), K-Nearest Neighbor (KNN), Spectral Angle Mapper (SAM), Support Vector Machine (SVM), and Maximum Likelihood (ML). Considering the classification accuracy achieved by each algorithm, they can be ranked as follows: Maximum Likelihood (ML) with 88.10%, Support Vector Machine (SVM) with 77.38%, Spectral Angle Mapper (SAM) with 76.19%, K-Nearest Neighbor (KNN) with 64.68%, and Random Forest (RF) with 61.90%. These results successfully identified the phytosanitary status of all the trees in the orchard with an acceptable level of accuracy, providing valuable management information for the grower. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-04-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/5390 |
url |
https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/5390 |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.relation.none.fl_str_mv |
https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/5390/5908 https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/5390/6622 |
dc.rights.none.fl_str_mv |
Derechos de autor 2024 Scientia Agropecuaria https://creativecommons.org/licenses/by-nc/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Derechos de autor 2024 Scientia Agropecuaria https://creativecommons.org/licenses/by-nc/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf text/html |
dc.publisher.none.fl_str_mv |
Universidad Nacional de Trujillo |
publisher.none.fl_str_mv |
Universidad Nacional de Trujillo |
dc.source.none.fl_str_mv |
Scientia Agropecuaria; Vol. 15 Núm. 2 (2024): Abril - Junio; 177-189 Scientia Agropecuaria; Vol. 15 No. 2 (2024): Abril - Junio; 177-189 2306-6741 2077-9917 reponame:Revistas - Universidad Nacional de Trujillo instname:Universidad Nacional de Trujillo instacron:UNITRU |
instname_str |
Universidad Nacional de Trujillo |
instacron_str |
UNITRU |
institution |
UNITRU |
reponame_str |
Revistas - Universidad Nacional de Trujillo |
collection |
Revistas - Universidad Nacional de Trujillo |
repository.name.fl_str_mv |
|
repository.mail.fl_str_mv |
|
_version_ |
1843350190205960192 |
spelling |
Identification of the phytosanitary status of trees using machine learning and very high spatial resolution imagesIdentificación del estado fitosanitario de árboles mediante aprendizaje automático e imágenes de muy alta resolución espacialDíaz Rivera, Juan CarlosAguirre-Salado, Carlos Arturo Loredo-Osti, Catarina Escoto-Rodríguez, Martín agricultura de precisiónárboles enfermoscítricos; naranjaMéxicovehículo aéreo no tripuladoprecision agriculturesick treescitrusOrangeMexicoUnmanned aerial vehicleTree diseases contribute to significant economic and food losses in the agricultural sector. Early detection of phytosanitary problems in trees with non-destructive methods is essential to guarantee sustainable orange production. This study presents the findings of a designed methodology conducted to identify diseased orange trees in an orchard situated in the citrus belt of Mexico, specifically in the Rioverde region of San Luis Potosi. To accomplish this, we captured images using a multispectral camera with very high spatial resolution, which was mounted on an unmanned aerial vehicle. These images were used to construct a georeferenced orthomosaic of the orchard. Six thematic classes were established to distinguish various health levels among the trees. We employed several supervised classification algorithms at the pixel level, including Random Forest (RF), K-Nearest Neighbor (KNN), Spectral Angle Mapper (SAM), Support Vector Machine (SVM), and Maximum Likelihood (ML). Considering the classification accuracy achieved by each algorithm, they can be ranked as follows: Maximum Likelihood (ML) with 88.10%, Support Vector Machine (SVM) with 77.38%, Spectral Angle Mapper (SAM) with 76.19%, K-Nearest Neighbor (KNN) with 64.68%, and Random Forest (RF) with 61.90%. These results successfully identified the phytosanitary status of all the trees in the orchard with an acceptable level of accuracy, providing valuable management information for the grower.Las enfermedades de los árboles contribuyen a importantes pérdidas económicas y de alimentos en el sector agrícola. La detección temprana de problemas fitosanitarios en árboles con métodos no destructivos resulta fundamental para garantizar la producción sostenible de naranja. Este trabajo presenta los resultados de una metodología diseñada para la identificación de árboles de naranja enfermos en una huerta ubicada en el cinturón citrícola de México, particularmente en la región de Rioverde, San Luis Potosí. Para ello, se tomaron imágenes con una cámara multiespectral de muy alta resolución espacial instalada en un vehículo aéreo no tripulado con las que se construyó un ortomosaico georreferenciado. Se emplearon seis clases temáticas para identificar los diferentes niveles de sanidad. Se utilizaron diferentes algoritmos de clasificación supervisada a nivel píxel que incluyen Random Forest (RF), K-Nearest Neighbor (KNN), Spectral Angle Mapper (SAM), Support Vector Machine (SVM), y Maximum Likelihood (ML). Considerando la exactitud de clasificación obtenida por cada uno de los algoritmos, se pueden ordenar de la siguiente manera: Maximum Likelihood (ML) con un 88,10%, Support Vector Machine (SVM) con un 77,38%, Spectral Angle Mapper (SAM) con un 76,19%, K-Nearest Neighbor (KNN) con un 64,68% y Random Forest (RF) con un 61,90%. Los resultados permitieron identificar el estado fitosanitario de todos los árboles de la huerta, con una exactitud aceptable y representan información valiosa de manejo para el productor.Universidad Nacional de Trujillo2024-04-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdftext/htmlhttps://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/5390Scientia Agropecuaria; Vol. 15 Núm. 2 (2024): Abril - Junio; 177-189Scientia Agropecuaria; Vol. 15 No. 2 (2024): Abril - Junio; 177-1892306-67412077-9917reponame:Revistas - Universidad Nacional de Trujilloinstname:Universidad Nacional de Trujilloinstacron:UNITRUspahttps://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/5390/5908https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/5390/6622Derechos de autor 2024 Scientia Agropecuariahttps://creativecommons.org/licenses/by-nc/4.0info:eu-repo/semantics/openAccessoai:ojs.revistas.unitru.edu.pe:article/53902024-03-27T12:46:48Z |
score |
12.873224 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).