A comparative analysis of methods: mimetics, finite differences and finite elements for 1-dimensional stationary problems

Descripción del Articulo

Numerical methods are useful for solving differential equations that model physical problems, for example, heat transfer, fluid dynamics, wave propagation, among others; especially when these cannot be solved by means of exact analysis techniques, since such problems present comple...

Descripción completa

Detalles Bibliográficos
Autores: Lugo Jiménez, Abdul Abner, Mata Díaz, Guelvis Enrique, Ruiz, Bladismir
Formato: artículo
Fecha de Publicación:2021
Institución:Universidad Nacional de Trujillo
Repositorio:Revistas - Universidad Nacional de Trujillo
Lenguaje:español
OAI Identifier:oai:ojs.revistas.unitru.edu.pe:article/3696
Enlace del recurso:https://revistas.unitru.edu.pe/index.php/SSMM/article/view/3696
Nivel de acceso:acceso abierto
Materia:Método mimético
Método de los elementos finitos
Método de diferencias finitas
Métodos conservativos
Convergencia
Mimetic method
Finite element method
Finite difference method
Conservative methods
Convergence
Descripción
Sumario:Numerical methods are useful for solving differential equations that model physical problems, for example, heat transfer, fluid dynamics, wave propagation, among others; especially when these cannot be solved by means of exact analysis techniques, since such problems present complex geometries, boundary or initial conditions, or involve non-linear differential equations. Currently, the number of problems that are modeled with partial differential equations are diverse and these must be addressed numerically, so that the results obtained are more in line with reality. In this work, a comparison of the classical numerical methods such as: the finite difference method (FDM) and the finite element method (FEM), with a modern technique of discretization called the mimetic method (MIM), or mimetic finite difference method or compatible method, is approached. With this comparison we try to conclude about the efficiency, order of convergence of these methods. Our analysis is based on a model problem with a one-dimensional boundary value, that is, we will study convection-diffusion equations in a stationary regime, with different variations in the gradient, diffusive coefficient and convective velocity.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).