Gradient method with AFEM for parameter-estimation

Descripción del Articulo

We consider the adaptive finite element discretization of parameter estimation problems for nonlinear elliptic partial differential equations. The idea is to use a gradient method on the finite-dimensional parameter space for the minimization of the least-squares residual. Since the gradient involve...

Descripción completa

Detalles Bibliográficos
Autor: Becker, Roland
Formato: artículo
Fecha de Publicación:2023
Institución:Universidad Nacional de Trujillo
Repositorio:Revistas - Universidad Nacional de Trujillo
Lenguaje:inglés
OAI Identifier:oai:ojs.revistas.unitru.edu.pe:article/5281
Enlace del recurso:https://revistas.unitru.edu.pe/index.php/SSMM/article/view/5281
Nivel de acceso:acceso abierto
Materia:Adaptive finite element methods
parameter estimation
gradient method
id REVUNITRU_1e209687a94aecd2d4fa92aa5412647f
oai_identifier_str oai:ojs.revistas.unitru.edu.pe:article/5281
network_acronym_str REVUNITRU
network_name_str Revistas - Universidad Nacional de Trujillo
repository_id_str
spelling Gradient method with AFEM for parameter-estimationBecker, RolandAdaptive finite element methodsparameter estimationgradient methodWe consider the adaptive finite element discretization of parameter estimation problems for nonlinear elliptic partial differential equations. The idea is to use a gradient method on the finite-dimensional parameter space for the minimization of the least-squares residual. Since the gradient involves solution of partial differential equations, it is not accesable, and is replaced by an approximation obtained by finite elements. This results into a perturbed gradient method. We use an (a posteriori) error estimator to control the accuracy of the gradient approximation and propose an algorithm, which links the estimator to the progress of the iteration. We show convergence of the algorithm under typical structural assumptions.National University of Trujillo - Academic Department of Mathematics2023-06-14info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://revistas.unitru.edu.pe/index.php/SSMM/article/view/5281Selecciones Matemáticas; Vol. 10 No. 01 (2023): Special Issue; 51 - 59Selecciones Matemáticas; Vol. 10 Núm. 01 (2023): Special Issue; 51 - 59Selecciones Matemáticas; v. 10 n. 01 (2023): Special Issue; 51 - 592411-1783reponame:Revistas - Universidad Nacional de Trujilloinstname:Universidad Nacional de Trujilloinstacron:UNITRUenghttps://revistas.unitru.edu.pe/index.php/SSMM/article/view/5281/5449https://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessoai:ojs.revistas.unitru.edu.pe:article/52812023-06-20T21:59:24Z
dc.title.none.fl_str_mv Gradient method with AFEM for parameter-estimation
title Gradient method with AFEM for parameter-estimation
spellingShingle Gradient method with AFEM for parameter-estimation
Becker, Roland
Adaptive finite element methods
parameter estimation
gradient method
title_short Gradient method with AFEM for parameter-estimation
title_full Gradient method with AFEM for parameter-estimation
title_fullStr Gradient method with AFEM for parameter-estimation
title_full_unstemmed Gradient method with AFEM for parameter-estimation
title_sort Gradient method with AFEM for parameter-estimation
dc.creator.none.fl_str_mv Becker, Roland
author Becker, Roland
author_facet Becker, Roland
author_role author
dc.subject.none.fl_str_mv Adaptive finite element methods
parameter estimation
gradient method
topic Adaptive finite element methods
parameter estimation
gradient method
description We consider the adaptive finite element discretization of parameter estimation problems for nonlinear elliptic partial differential equations. The idea is to use a gradient method on the finite-dimensional parameter space for the minimization of the least-squares residual. Since the gradient involves solution of partial differential equations, it is not accesable, and is replaced by an approximation obtained by finite elements. This results into a perturbed gradient method. We use an (a posteriori) error estimator to control the accuracy of the gradient approximation and propose an algorithm, which links the estimator to the progress of the iteration. We show convergence of the algorithm under typical structural assumptions.
publishDate 2023
dc.date.none.fl_str_mv 2023-06-14
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv https://revistas.unitru.edu.pe/index.php/SSMM/article/view/5281
url https://revistas.unitru.edu.pe/index.php/SSMM/article/view/5281
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://revistas.unitru.edu.pe/index.php/SSMM/article/view/5281/5449
dc.rights.none.fl_str_mv https://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv National University of Trujillo - Academic Department of Mathematics
publisher.none.fl_str_mv National University of Trujillo - Academic Department of Mathematics
dc.source.none.fl_str_mv Selecciones Matemáticas; Vol. 10 No. 01 (2023): Special Issue; 51 - 59
Selecciones Matemáticas; Vol. 10 Núm. 01 (2023): Special Issue; 51 - 59
Selecciones Matemáticas; v. 10 n. 01 (2023): Special Issue; 51 - 59
2411-1783
reponame:Revistas - Universidad Nacional de Trujillo
instname:Universidad Nacional de Trujillo
instacron:UNITRU
instname_str Universidad Nacional de Trujillo
instacron_str UNITRU
institution UNITRU
reponame_str Revistas - Universidad Nacional de Trujillo
collection Revistas - Universidad Nacional de Trujillo
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1845886946819178496
score 13.361153
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).