Fatou’s Theorem; its contribution to harmonic analysis

Descripción del Articulo

The objective of this article is to see how Fatou’s theorem, given at the beginning of the 20th century, motivated new developments in harmonic analysis and partial differential equations in the second half of that century. In this writing we give a brief tour of some of the contributions given by d...

Descripción completa

Detalles Bibliográficos
Autor: Ortiz Fernández, Alejandro
Formato: artículo
Fecha de Publicación:2025
Institución:Universidad Nacional de Trujillo
Repositorio:Revistas - Universidad Nacional de Trujillo
Lenguaje:español
OAI Identifier:oai:ojs.revistas.unitru.edu.pe:article/6639
Enlace del recurso:https://revistas.unitru.edu.pe/index.php/SSMM/article/view/6639
Nivel de acceso:acceso abierto
Materia:Fatou
harmonic measure
Lipschitz
Hp
BMO
integral area
function N(u)
Ap - class
medida armónica
integral área
función N(u)
Clase Ap
id REVUNITRU_0ca5793f4fb9e3c4c6ada1562a2c957a
oai_identifier_str oai:ojs.revistas.unitru.edu.pe:article/6639
network_acronym_str REVUNITRU
network_name_str Revistas - Universidad Nacional de Trujillo
repository_id_str
spelling Fatou’s Theorem; its contribution to harmonic analysisEl teorema de Fatou; su contribución al análisis armónicosFatou’s Theorem; its contribution to harmonic analysisOrtiz Fernández, AlejandroFatouharmonic measureLipschitzHpBMOintegral areafunction N(u)Ap - classFatoumedida armónicaLipschitzHpBMOintegral áreafunción N(u)Clase ApFatouharmonic measureLipschitzHpBMOintegral areafunction N(u)Ap - classThe objective of this article is to see how Fatou’s theorem, given at the beginning of the 20th century, motivated new developments in harmonic analysis and partial differential equations in the second half of that century. In this writing we give a brief tour of some of the contributions given by distinguished analysis and in this way our interest is to make such progress known in Peru and thus contribute to the development of this beautiful branch of mathematical analysis, which we believe is almost unknown in our country. In particular we have paid some attention to the work of Jerison - Kenig [1] because such work contains an overview that helps meet our objective.El objetivo de este artículo es ver como el teorema de Fatou, dado a inicios del siglo XX, motivó nuevos desarrollos en el análisis armónico y en las ecuaciones en derivadas parciales en la segunda mitad de tal siglo. En este escrito damos un breve recorrido por algunas de las contribuciones dadas por distinguidos analistas y de esta manera nuestro interés es dar a conocer en el Perú tales progresos y así contribuir con el desarrollo de esta bella rama del análisis matemático, que creemos es casi desconocida en nuestro país. En particular hemos puesto cierta atención al trabajo de Jerison - Kenig [1], por contener tal trabajo un panorama que ayuda a cumplir con nuestro objetivo.The objective of this article is to see how Fatou’s theorem, given at the beginning of the 20th century, motivated new developments in harmonic analysis and partial differential equations in the second half of that century. In this writing we give a brief tour of some of the contributions given by distinguished analysis and in this way our interest is to make such progress known in Peru and thus contribute to the development of this beautiful branch of mathematical analysis, which we believe is almost unknown in our country. In particular we have paid some attention to the work of Jerison - Kenig [1] because such work contains an overview that helps meet our objective.National University of Trujillo - Academic Department of Mathematics2025-07-26info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículo evaluado por paresapplication/pdfhttps://revistas.unitru.edu.pe/index.php/SSMM/article/view/6639Selecciones Matemáticas; Vol. 12 No. 01 (2025): January - July; 186 - 217Selecciones Matemáticas; Vol. 12 Núm. 01 (2025): Enero - Julio; 186 - 217Selecciones Matemáticas; v. 12 n. 01 (2025): Janeiro - Julho; 186 - 2172411-1783reponame:Revistas - Universidad Nacional de Trujilloinstname:Universidad Nacional de Trujilloinstacron:UNITRUspahttps://revistas.unitru.edu.pe/index.php/SSMM/article/view/6639/6871https://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessoai:ojs.revistas.unitru.edu.pe:article/66392025-07-26T15:43:48Z
dc.title.none.fl_str_mv Fatou’s Theorem; its contribution to harmonic analysis
El teorema de Fatou; su contribución al análisis armónicos
Fatou’s Theorem; its contribution to harmonic analysis
title Fatou’s Theorem; its contribution to harmonic analysis
spellingShingle Fatou’s Theorem; its contribution to harmonic analysis
Ortiz Fernández, Alejandro
Fatou
harmonic measure
Lipschitz
Hp
BMO
integral area
function N(u)
Ap - class
Fatou
medida armónica
Lipschitz
Hp
BMO
integral área
función N(u)
Clase Ap
Fatou
harmonic measure
Lipschitz
Hp
BMO
integral area
function N(u)
Ap - class
title_short Fatou’s Theorem; its contribution to harmonic analysis
title_full Fatou’s Theorem; its contribution to harmonic analysis
title_fullStr Fatou’s Theorem; its contribution to harmonic analysis
title_full_unstemmed Fatou’s Theorem; its contribution to harmonic analysis
title_sort Fatou’s Theorem; its contribution to harmonic analysis
dc.creator.none.fl_str_mv Ortiz Fernández, Alejandro
author Ortiz Fernández, Alejandro
author_facet Ortiz Fernández, Alejandro
author_role author
dc.subject.none.fl_str_mv Fatou
harmonic measure
Lipschitz
Hp
BMO
integral area
function N(u)
Ap - class
Fatou
medida armónica
Lipschitz
Hp
BMO
integral área
función N(u)
Clase Ap
Fatou
harmonic measure
Lipschitz
Hp
BMO
integral area
function N(u)
Ap - class
topic Fatou
harmonic measure
Lipschitz
Hp
BMO
integral area
function N(u)
Ap - class
Fatou
medida armónica
Lipschitz
Hp
BMO
integral área
función N(u)
Clase Ap
Fatou
harmonic measure
Lipschitz
Hp
BMO
integral area
function N(u)
Ap - class
description The objective of this article is to see how Fatou’s theorem, given at the beginning of the 20th century, motivated new developments in harmonic analysis and partial differential equations in the second half of that century. In this writing we give a brief tour of some of the contributions given by distinguished analysis and in this way our interest is to make such progress known in Peru and thus contribute to the development of this beautiful branch of mathematical analysis, which we believe is almost unknown in our country. In particular we have paid some attention to the work of Jerison - Kenig [1] because such work contains an overview that helps meet our objective.
publishDate 2025
dc.date.none.fl_str_mv 2025-07-26
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Artículo evaluado por pares
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv https://revistas.unitru.edu.pe/index.php/SSMM/article/view/6639
url https://revistas.unitru.edu.pe/index.php/SSMM/article/view/6639
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv https://revistas.unitru.edu.pe/index.php/SSMM/article/view/6639/6871
dc.rights.none.fl_str_mv https://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv National University of Trujillo - Academic Department of Mathematics
publisher.none.fl_str_mv National University of Trujillo - Academic Department of Mathematics
dc.source.none.fl_str_mv Selecciones Matemáticas; Vol. 12 No. 01 (2025): January - July; 186 - 217
Selecciones Matemáticas; Vol. 12 Núm. 01 (2025): Enero - Julio; 186 - 217
Selecciones Matemáticas; v. 12 n. 01 (2025): Janeiro - Julho; 186 - 217
2411-1783
reponame:Revistas - Universidad Nacional de Trujillo
instname:Universidad Nacional de Trujillo
instacron:UNITRU
instname_str Universidad Nacional de Trujillo
instacron_str UNITRU
institution UNITRU
reponame_str Revistas - Universidad Nacional de Trujillo
collection Revistas - Universidad Nacional de Trujillo
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1843350212762927104
score 13.124538
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).