Congruence of geodesic spheres in H3 and S3
Descripción del Articulo
In [2], was obtained a characterization of the surfaces in R3 which are envelopes of a sphere congruence in R3, in which the other envelope is in R2. In this paper, we characterize the surfaces of H3 and S3 which are envelopes of a congruence of geodesic spheres in H3 and S3, respectively, in which...
| Autores: | , |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2018 |
| Institución: | Universidad Nacional de Trujillo |
| Repositorio: | Revistas - Universidad Nacional de Trujillo |
| Lenguaje: | español |
| OAI Identifier: | oai:ojs.revistas.unitru.edu.pe:article/2198 |
| Enlace del recurso: | https://revistas.unitru.edu.pe/index.php/SSMM/article/view/2198 |
| Nivel de acceso: | acceso abierto |
| Materia: | Superfícies de tipo esférico linhas de curvatura espaço Hiperbólico congruencia de esferas geodésicas Surfaces of the spherical type lines of curvature Hyperbolic space congruence of geodesic spheres |
| id |
REVUNITRU_027f110d889792106780dc0371445a55 |
|---|---|
| oai_identifier_str |
oai:ojs.revistas.unitru.edu.pe:article/2198 |
| network_acronym_str |
REVUNITRU |
| network_name_str |
Revistas - Universidad Nacional de Trujillo |
| repository_id_str |
|
| spelling |
Congruence of geodesic spheres in H3 and S3Congruencias de esferas geodésicas em H3 e S3S. Reyes, Edwin O.C. Riveros, Carlos M.Superfícies de tipo esféricolinhas de curvaturaespaço Hiperbólicocongruencia de esferas geodésicasSurfaces of the spherical typelines of curvatureHyperbolic spacecongruence of geodesic spheresIn [2], was obtained a characterization of the surfaces in R3 which are envelopes of a sphere congruence in R3, in which the other envelope is in R2. In this paper, we characterize the surfaces of H3 and S3 which are envelopes of a congruence of geodesic spheres in H3 and S3, respectively, in which the other envelope is contained in H2 H3and S2 S3. We show that this characterization allows locally to obtain a parameterization of the surfaces contained in H3 and S3, this characterization extends the result obtained in [2]. Moreover, we provide sufficient conditions for these surfaces to be locally associated by a transformation of Ribaucour. Also, we present families of surfaces parameterized by lines of curvature in H3 and S3, which depend on a function of two variables which is solution of a differential equation. Finally, we characterize the surfaces of the spherical type in H3 and S3, as the surfaces where its radius function is the solution of the Helmholtz equation. Em [2], foi obtida uma caracterização das superfícies em R3 que são envelopes de uma congruência de esferas em R3, na qual o outro envelope está em R2. Neste artigo, caracterizamos as superfícies de H3 e S3 que são envelopes de uma congruência de esferas geodésicas em H3 e S3, respectivamente, na qual o outro envelope está contido em H2 H3 e S2 S3. Mostramos que esta caracterização permite obter localmente uma parametrização das superfícies contidas em H3 e S3, esta caracterização estende o resultado obtido em [2]. Além disso, damos condições suficientes para que estas superficies estejam associadas localmente por uma transformação de Ribaucour. Também, apresentamos famílias de superfícies parametrizadas por linhas de curvatura H3 e S3, que dependem unicamente de uma função de duas variavéis, a qual é solução de uma equação diferencial. Finalmente, caracterizamos as superfícies de tipo esférico em H3 e S3, como as superfícies onde sua função raio é solução da equação de Helmholtz.National University of Trujillo - Academic Department of Mathematics2018-12-30info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdftext/htmlhttps://revistas.unitru.edu.pe/index.php/SSMM/article/view/2198Selecciones Matemáticas; Vol. 5 No. 02 (2018): August - December; 212-229Selecciones Matemáticas; Vol. 5 Núm. 02 (2018): Agosto - Diciembre; 212-229Selecciones Matemáticas; v. 5 n. 02 (2018): Agosto - Diciembre; 212-2292411-1783reponame:Revistas - Universidad Nacional de Trujilloinstname:Universidad Nacional de Trujilloinstacron:UNITRUspahttps://revistas.unitru.edu.pe/index.php/SSMM/article/view/2198/2284https://revistas.unitru.edu.pe/index.php/SSMM/article/view/2198/2261Derechos de autor 2018 Selecciones Matemáticasinfo:eu-repo/semantics/openAccessoai:ojs.revistas.unitru.edu.pe:article/21982022-10-21T18:53:07Z |
| dc.title.none.fl_str_mv |
Congruence of geodesic spheres in H3 and S3 Congruencias de esferas geodésicas em H3 e S3 |
| title |
Congruence of geodesic spheres in H3 and S3 |
| spellingShingle |
Congruence of geodesic spheres in H3 and S3 S. Reyes, Edwin O. Superfícies de tipo esférico linhas de curvatura espaço Hiperbólico congruencia de esferas geodésicas Surfaces of the spherical type lines of curvature Hyperbolic space congruence of geodesic spheres |
| title_short |
Congruence of geodesic spheres in H3 and S3 |
| title_full |
Congruence of geodesic spheres in H3 and S3 |
| title_fullStr |
Congruence of geodesic spheres in H3 and S3 |
| title_full_unstemmed |
Congruence of geodesic spheres in H3 and S3 |
| title_sort |
Congruence of geodesic spheres in H3 and S3 |
| dc.creator.none.fl_str_mv |
S. Reyes, Edwin O. C. Riveros, Carlos M. |
| author |
S. Reyes, Edwin O. |
| author_facet |
S. Reyes, Edwin O. C. Riveros, Carlos M. |
| author_role |
author |
| author2 |
C. Riveros, Carlos M. |
| author2_role |
author |
| dc.subject.none.fl_str_mv |
Superfícies de tipo esférico linhas de curvatura espaço Hiperbólico congruencia de esferas geodésicas Surfaces of the spherical type lines of curvature Hyperbolic space congruence of geodesic spheres |
| topic |
Superfícies de tipo esférico linhas de curvatura espaço Hiperbólico congruencia de esferas geodésicas Surfaces of the spherical type lines of curvature Hyperbolic space congruence of geodesic spheres |
| description |
In [2], was obtained a characterization of the surfaces in R3 which are envelopes of a sphere congruence in R3, in which the other envelope is in R2. In this paper, we characterize the surfaces of H3 and S3 which are envelopes of a congruence of geodesic spheres in H3 and S3, respectively, in which the other envelope is contained in H2 H3and S2 S3. We show that this characterization allows locally to obtain a parameterization of the surfaces contained in H3 and S3, this characterization extends the result obtained in [2]. Moreover, we provide sufficient conditions for these surfaces to be locally associated by a transformation of Ribaucour. Also, we present families of surfaces parameterized by lines of curvature in H3 and S3, which depend on a function of two variables which is solution of a differential equation. Finally, we characterize the surfaces of the spherical type in H3 and S3, as the surfaces where its radius function is the solution of the Helmholtz equation. |
| publishDate |
2018 |
| dc.date.none.fl_str_mv |
2018-12-30 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
https://revistas.unitru.edu.pe/index.php/SSMM/article/view/2198 |
| url |
https://revistas.unitru.edu.pe/index.php/SSMM/article/view/2198 |
| dc.language.none.fl_str_mv |
spa |
| language |
spa |
| dc.relation.none.fl_str_mv |
https://revistas.unitru.edu.pe/index.php/SSMM/article/view/2198/2284 https://revistas.unitru.edu.pe/index.php/SSMM/article/view/2198/2261 |
| dc.rights.none.fl_str_mv |
Derechos de autor 2018 Selecciones Matemáticas info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Derechos de autor 2018 Selecciones Matemáticas |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf text/html |
| dc.publisher.none.fl_str_mv |
National University of Trujillo - Academic Department of Mathematics |
| publisher.none.fl_str_mv |
National University of Trujillo - Academic Department of Mathematics |
| dc.source.none.fl_str_mv |
Selecciones Matemáticas; Vol. 5 No. 02 (2018): August - December; 212-229 Selecciones Matemáticas; Vol. 5 Núm. 02 (2018): Agosto - Diciembre; 212-229 Selecciones Matemáticas; v. 5 n. 02 (2018): Agosto - Diciembre; 212-229 2411-1783 reponame:Revistas - Universidad Nacional de Trujillo instname:Universidad Nacional de Trujillo instacron:UNITRU |
| instname_str |
Universidad Nacional de Trujillo |
| instacron_str |
UNITRU |
| institution |
UNITRU |
| reponame_str |
Revistas - Universidad Nacional de Trujillo |
| collection |
Revistas - Universidad Nacional de Trujillo |
| repository.name.fl_str_mv |
|
| repository.mail.fl_str_mv |
|
| _version_ |
1847155311880699904 |
| score |
13.098975 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).