Susceptibility to degradation by absorbed hydrogen of AISI 1045 steel subjected to tests of slow traction and static fatigue in a hydrogenated medium

Descripción del Articulo

In this paper is evaluation of susceptibility to hydrogen degradation ofAl SI steel 1045. Susceptibility of AISI 1045 steel to hydrogen embrittlement has been made by mechanical tensile test a static fatigue in hydrogen generation environments. Test were carred out using round notched specimens subj...

Descripción completa

Detalles Bibliográficos
Autor: Vásquez García, Optaciano
Formato: artículo
Fecha de Publicación:2019
Institución:Universidad Nacional Santiago Antúnez de Mayolo
Repositorio:Revistas - Universidad Nacional Santiago Antunez de Mayolo
Lenguaje:español
OAI Identifier:oai:ojs.192.168.1.71:article/630
Enlace del recurso:http://revistas.unasam.edu.pe/index.php/Aporte_Santiaguino/article/view/630
Nivel de acceso:acceso abierto
Materia:Fragilización por hidrógeno
Fatiga estática
Resistencia mecánica
Ductilidad
Esferoidizado
id REVUNASAM_255b901537626dfc749816500b627173
oai_identifier_str oai:ojs.192.168.1.71:article/630
network_acronym_str REVUNASAM
network_name_str Revistas - Universidad Nacional Santiago Antunez de Mayolo
repository_id_str .
dc.title.none.fl_str_mv Susceptibility to degradation by absorbed hydrogen of AISI 1045 steel subjected to tests of slow traction and static fatigue in a hydrogenated medium
Susceptibilidad a la degradación por Hidrógeno absorbido del acero AISI 1045 sometido a ensayos de tracción lenta y de fatiga estática en un medio hidrogenado
title Susceptibility to degradation by absorbed hydrogen of AISI 1045 steel subjected to tests of slow traction and static fatigue in a hydrogenated medium
spellingShingle Susceptibility to degradation by absorbed hydrogen of AISI 1045 steel subjected to tests of slow traction and static fatigue in a hydrogenated medium
Vásquez García, Optaciano
Fragilización por hidrógeno
Fatiga estática
Resistencia mecánica
Ductilidad
Esferoidizado
title_short Susceptibility to degradation by absorbed hydrogen of AISI 1045 steel subjected to tests of slow traction and static fatigue in a hydrogenated medium
title_full Susceptibility to degradation by absorbed hydrogen of AISI 1045 steel subjected to tests of slow traction and static fatigue in a hydrogenated medium
title_fullStr Susceptibility to degradation by absorbed hydrogen of AISI 1045 steel subjected to tests of slow traction and static fatigue in a hydrogenated medium
title_full_unstemmed Susceptibility to degradation by absorbed hydrogen of AISI 1045 steel subjected to tests of slow traction and static fatigue in a hydrogenated medium
title_sort Susceptibility to degradation by absorbed hydrogen of AISI 1045 steel subjected to tests of slow traction and static fatigue in a hydrogenated medium
dc.creator.none.fl_str_mv Vásquez García, Optaciano
author Vásquez García, Optaciano
author_facet Vásquez García, Optaciano
author_role author
dc.subject.none.fl_str_mv Fragilización por hidrógeno
Fatiga estática
Resistencia mecánica
Ductilidad
Esferoidizado
topic Fragilización por hidrógeno
Fatiga estática
Resistencia mecánica
Ductilidad
Esferoidizado
description In this paper is evaluation of susceptibility to hydrogen degradation ofAl SI steel 1045. Susceptibility of AISI 1045 steel to hydrogen embrittlement has been made by mechanical tensile test a static fatigue in hydrogen generation environments. Test were carred out using round notched specimens subjected to axial tensile load in O, IN EI2SO4 solution with to 0,25 g/1 arsenite sodium using hydrogen cathodic charging technique at densities current various. Reduction in area, tensile strength and fracture delayed of time were chosen relative changes as measures of susceptibility to hydrogen embrittlement. Fracture modes of failed samples were examined with of microscope. Mechanical test in inert environmental (air) comparisons and mechanical test in hydrogen generating environment show that both steels are susceptibility to hydrogen embrittlement.Samples of esferoidized steel have lower lost of ductility and strength than base metal samples. These variations in mechanical properties display a direct bearing on the current density. Also, both steels undergo changes in the fracture mode from a ductile to a brittle morphology in base metal while esferoidized morphology steel changes from highly ductile to a mixture of brittle fracture with ductile zones. These variations change with permanence time of hydrogen generated environmental steel.
publishDate 2019
dc.date.none.fl_str_mv 2019-09-04
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://revistas.unasam.edu.pe/index.php/Aporte_Santiaguino/article/view/630
10.32911/as.2011.v4.n1.630
url http://revistas.unasam.edu.pe/index.php/Aporte_Santiaguino/article/view/630
identifier_str_mv 10.32911/as.2011.v4.n1.630
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv http://revistas.unasam.edu.pe/index.php/Aporte_Santiaguino/article/view/630/791
/*ref*/Albístur, A., Femandez, J. 2005. Influencia del hidrógeno en las propiedades mecánicas de los aceros Micro 1000 y Formax. Males de Mecánica de Fractura. Vol 22. pp 155-160.
/*ref*/ASTM G129-95. 1996. Slow strain rate testing to evaluate the susceptibility of metallic materials to environmentally assited cracking.
/*ref*/Beachem, C.D. 1972. A new model for hydrogenassi sted cracking. Metalls Trans.; 3(2) pp 437-451.
/*ref*/Bemstein, 1.M., and Thompson, A.W. 1976. Effect of metallurgical variables on environmental fracture of steels. Intl. Metall. Rey., 21, pp269-287.
/*ref*/Bimbaum, J.K., Sofronis, R 1994. Hydrogenenhanced localized plasticity-A mechanism for hydrogen related fracture. Mater Sci. Eng. A-Struc. Mater. Prop. 176A (1-2) 191-202.
/*ref*/Bimbaun, H.K, 1990).Mechanism of Hydrogen- Related Fracture of Metals. In: Ganglof, R.P, Ives, M.B (edis), First International Conference on Environmental-induced Cracking of Metals, NACE, Houston, TX, pp. 21-27.
/*ref*/Blanco, E., y Andreone, C., 1984. Tesis Doctoral CNEA. Argentina
/*ref*/Cabo, A. 1982. Tecnología de tratamientos térmicos, CNEA. Argentina 1982 pp.74-80.
/*ref*/Cayón, A., Alvarez, J., 2003. Gutierrez, F. Influencia de la microestructura y de los estados triaxiales de tensión en fenómenos fisuración inducida por el ambiente. Anales de Mecánica de la Fractura. Vol 10, pp 273-278.
/*ref*/Chang, S.C. and Hirth, J.P. 1985. Hydrogen Degradation of Spheroidized AISI 1090 Steels. Metall. Transac. Vol 16A pp 1417-1425. Cialone, H.,and Asaro, R. J. 1981. Metalls trans Vol I 2A, pp 1981-1373.
/*ref*/Daoming Li, D. Gangloff, R.P., Scully, J.R. 2004. Hydrogen trap states in ultra high-stregth aermet 100 steel. Metall. and Mater. Transf. Vol 35A. pp 849-864.
/*ref*/Eliaz, N., Shachar, A., Tal., B., Eliezer, D. 2002. Characteristics of hydrogen embrittlement, stress corrosion cracking and tempered martensi te embrittlement in high-strength steels. Eng Failure Analysis 9 pp 167-184.
/*ref*/Fukai, Y., 1993. The Metal-Hydrogen System. Basic Bulk Properties. Springer, Berlin.
/*ref*/Galvele, J.R., 2000. Recent developments in the surface-mobility. Corrosion Science. 27 (1)p 1-33. Gangloff, R.P., Ives, M.V. 1990. First International Conference on Environmental-induced Cracking of Metals, NACE-I0, Houston, TX.
/*ref*/Groenevel, T.P., and ELSEA, A.R., 1972. Hydrogen Emnbrittlement Testing, ASTM STP 543, pp 11.
/*ref*/Hirth, J.P, 1996. in Hydrogen effects in metals, Eds., A.W.Thompson and N.R. Moody, The minerals, Metals. Materials Society pp 507-522
/*ref*/Jones, R.H., (ed), 2001. Chemistry and electrochemistry of corrosion and Stress Corrosion Cracking: Symposium Honoring the Contributions of R.W Staehle. TMS, Warrendale. PA.
/*ref*/Kerns, G.E., Wang, M.T., Staehle., 1977. Stress Corrosion Cracking and Hydrogen Embritlement in High Strength Steels. In: Staehe, R.W, R.W., Hochman (eds). NACE, Houston, TX, pp 700-735
/*ref*/Kim, J.S., Park, K., Lee, D., Lee C S 2003. Effect of lntergranular Ferrite on Hydrogen Delayed Fracture Resistence of High Strength boron-added Steel. National Research Laboratory Program of the Korea Ministry of Science and Tecnology. Pp 1-9.
/*ref*/Manning, J. R., 1973. Theory of diffusion. Difussion ASM 1-24.
/*ref*/Marsh, P., Gerberech, %V, 1992. Stress corrosion cracking of higt-strength steels. In: Jone, R.H. (Ed.). Stress- corrosion Cracking. ASM International, Materials Park, OH, pp. 63-90
/*ref*/Meizoso, A. M., y Martinez, J.M. 2005. Propagación catastrófica de grietas. Cap 3. " Micromecanismos de Fractura".
/*ref*/Nelson, H.G., 1976., Film-rupture of hydrogeninduced, slow crac growth in acicular alpha-beta titanium. Metal!. Trans, A Phys. Metal!. Maten Sci. 7A(5), 621-627.
/*ref*/Oriani, R. A. 1990. Hydrogen Effects in Highstrength Steels. In Gangloff, R.P., ¡ves, M,B. (EDS). First Internacional Conference on Environmental.induced Cracking of Metals, NACE- 10. NACE, Houston, TX pp. 439-447.
/*ref*/Oriani, R.A. 1967. Hydrogen in metals. Proc. Conf. Fundamental Aspects of SCC, (eds) R. W Staeh, A. J Forty D Van Roogen (NACE). Pp 32-50.
/*ref*/Oriani, R.A., Hirth, J.P., Smialowslcy, M., 1985. Hydrogen degradation of ferrous alloys. Notyes p Pub!. Park, Ridge. USA.
/*ref*/Rajan, N., and Howard, W., 1988. A mechanical anal ysis of hydrogen into metals during cathodic hydrogen chargin. Scripta Metallurgica. Vol 22, pp 911-916
/*ref*/Serebrinsky, S., Carter, E.A., Ortiz, M. 2004. A quantum-mechanically informed continuum model of hydrogen embrittlement. Journal of the Mechanics and Physics of Solid. Vol 32. Pp 2403-2430.
/*ref*/Sieradzki, K., Newman, R. C., 1985. Brittle behavior of ductile metals during stress-corrosion cracking. Philos. Mag.A51 (1),p 95-132.
/*ref*/Smith, R.D., Landys, G.P., Moroef, I., Olson, D.L. y Wildeman, T.R. 2001. The determination of Hydrogen Dstribution in High-Strength Steel Welments. Welding Research.
/*ref*/Sofronis, P., 2001. Recent advances in the engineerirtg aspects of hydrogen embrittlement. Special number. Eng. Frac. Mech. 68(6), p 617-837.
/*ref*/Stroe, M. E. 2006. Hydrogen Embrittlement of Ferrous Materials. Doctoral Thesis.
/*ref*/Talsbot - Besnard, S., 1982. International Conference Proceedings on Hydrogen problems en steel. PP 37- 42.
/*ref*/Tien, J.K., Thompson, A.W., Bernstein, I.M, Richard,R.J. 1976. Hydrogen transport by dislocations. Metals Trans. A; 7A pp 821-900.
/*ref*/Troiano, A.R., 1960. The role of hydrogen and other interstitials in the mechanical behavior of metals. Trans. ASM 52, pp 54-80.
/*ref*/Turnbull, A., 2001. Modeling of environmental assisted cracking. Corrosion Science. 34(6), p 921- 960.
/*ref*/Zapffe, C.A and Sims C.E., 1941. Hydrogen Embrittlemen, Internal Stress andDefects in Steel, American Instante of Mining and Metallurgical Engineers, No.1307, pp.1-37.
/*ref*/Ziobrowski, C., Bruzoni, P., Hazarabedian, A., Ovejero, J. 2001. Influencia de los óxidos ene! daño por hidrógeno de un acero microaleado. Jornadas SAM-CONAMET-AS. pp 299-306.
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad Nacional Santiago Antúnez de Mayolo
publisher.none.fl_str_mv Universidad Nacional Santiago Antúnez de Mayolo
dc.source.none.fl_str_mv Aporte Santiaguino; Vol. 4, Núm. 1 (2011): Enero-Junio; Pág: 15-26
2616-9541
2070-836X
reponame:Revistas - Universidad Nacional Santiago Antunez de Mayolo
instname:Universidad Nacional Santiago Antúnez de Mayolo
instacron:UNASAM
instname_str Universidad Nacional Santiago Antúnez de Mayolo
instacron_str UNASAM
institution UNASAM
reponame_str Revistas - Universidad Nacional Santiago Antunez de Mayolo
collection Revistas - Universidad Nacional Santiago Antunez de Mayolo
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1769147488464273408
spelling Susceptibility to degradation by absorbed hydrogen of AISI 1045 steel subjected to tests of slow traction and static fatigue in a hydrogenated mediumSusceptibilidad a la degradación por Hidrógeno absorbido del acero AISI 1045 sometido a ensayos de tracción lenta y de fatiga estática en un medio hidrogenadoVásquez García, OptacianoFragilización por hidrógenoFatiga estáticaResistencia mecánicaDuctilidadEsferoidizadoIn this paper is evaluation of susceptibility to hydrogen degradation ofAl SI steel 1045. Susceptibility of AISI 1045 steel to hydrogen embrittlement has been made by mechanical tensile test a static fatigue in hydrogen generation environments. Test were carred out using round notched specimens subjected to axial tensile load in O, IN EI2SO4 solution with to 0,25 g/1 arsenite sodium using hydrogen cathodic charging technique at densities current various. Reduction in area, tensile strength and fracture delayed of time were chosen relative changes as measures of susceptibility to hydrogen embrittlement. Fracture modes of failed samples were examined with of microscope. Mechanical test in inert environmental (air) comparisons and mechanical test in hydrogen generating environment show that both steels are susceptibility to hydrogen embrittlement.Samples of esferoidized steel have lower lost of ductility and strength than base metal samples. These variations in mechanical properties display a direct bearing on the current density. Also, both steels undergo changes in the fracture mode from a ductile to a brittle morphology in base metal while esferoidized morphology steel changes from highly ductile to a mixture of brittle fracture with ductile zones. These variations change with permanence time of hydrogen generated environmental steel.En este estudio se evalúa la susceptibilidad del acero AISI 1045 a la degradación por hidrógeno. La susceptibilidad del acero a la degradación por hidrógeno fue hecha mediante ensayos mecánicos de tracción lenta y de fatiga estática en un medio hidrogenado. Los ensayos fueron llevados a cabo con muestras cilíndricas entalladas sometidas a carga axial en un medio inerte (aire), yen una disolución de 1-12,50, O, IN a con 0,25 g/1 de arsenito de sodio, usando la técnica de carga catódica con hidrógeno a varias densidades de corriente. Como medidas de la susceptibilidad a la fragilización por hidrógeno fueron escogidas las variaciones relativas de la resistencia mecánica, la reducción en el área y el tiempo de fractura diferida.Finalmente fueron examinados los modos de fractura de las muestras fracturadas con un microscopio. Las comparaciones de los ensayos mecánicos en un medio inerte (aire) y los ensayos mecánicos en un medio hidrogenado, revelan que ambos aceros son susceptibles a la fragilización por hidrógeno. Las muestras de acero esferoidizado presentan menor pérdida de ductilidad y de la resistencia mecánica que las muestras de metal base. Estas variaciones en las propiedades mecánicas presentan una relación directa con la densidad de corriente aplicada. Asimismo, ambos aceros experimentan cambios en el modo de fractura pasando de una morfología dúctil a una frágil en el acero de suministro, mientras que en el acero esferoidizado cambia de una morfología altamente dúctil a una mezcla de fractura frágil con zonas dúctiles. Estas variaciones cambian con el tiempo de permanencia del acero en el medio generador de hidrógenoUniversidad Nacional Santiago Antúnez de Mayolo2019-09-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://revistas.unasam.edu.pe/index.php/Aporte_Santiaguino/article/view/63010.32911/as.2011.v4.n1.630Aporte Santiaguino; Vol. 4, Núm. 1 (2011): Enero-Junio; Pág: 15-262616-95412070-836Xreponame:Revistas - Universidad Nacional Santiago Antunez de Mayoloinstname:Universidad Nacional Santiago Antúnez de Mayoloinstacron:UNASAMspahttp://revistas.unasam.edu.pe/index.php/Aporte_Santiaguino/article/view/630/791/*ref*/Albístur, A., Femandez, J. 2005. Influencia del hidrógeno en las propiedades mecánicas de los aceros Micro 1000 y Formax. Males de Mecánica de Fractura. Vol 22. pp 155-160./*ref*/ASTM G129-95. 1996. Slow strain rate testing to evaluate the susceptibility of metallic materials to environmentally assited cracking./*ref*/Beachem, C.D. 1972. A new model for hydrogenassi sted cracking. Metalls Trans.; 3(2) pp 437-451./*ref*/Bemstein, 1.M., and Thompson, A.W. 1976. Effect of metallurgical variables on environmental fracture of steels. Intl. Metall. Rey., 21, pp269-287./*ref*/Bimbaum, J.K., Sofronis, R 1994. Hydrogenenhanced localized plasticity-A mechanism for hydrogen related fracture. Mater Sci. Eng. A-Struc. Mater. Prop. 176A (1-2) 191-202./*ref*/Bimbaun, H.K, 1990).Mechanism of Hydrogen- Related Fracture of Metals. In: Ganglof, R.P, Ives, M.B (edis), First International Conference on Environmental-induced Cracking of Metals, NACE, Houston, TX, pp. 21-27./*ref*/Blanco, E., y Andreone, C., 1984. Tesis Doctoral CNEA. Argentina/*ref*/Cabo, A. 1982. Tecnología de tratamientos térmicos, CNEA. Argentina 1982 pp.74-80./*ref*/Cayón, A., Alvarez, J., 2003. Gutierrez, F. Influencia de la microestructura y de los estados triaxiales de tensión en fenómenos fisuración inducida por el ambiente. Anales de Mecánica de la Fractura. Vol 10, pp 273-278./*ref*/Chang, S.C. and Hirth, J.P. 1985. Hydrogen Degradation of Spheroidized AISI 1090 Steels. Metall. Transac. Vol 16A pp 1417-1425. Cialone, H.,and Asaro, R. J. 1981. Metalls trans Vol I 2A, pp 1981-1373./*ref*/Daoming Li, D. Gangloff, R.P., Scully, J.R. 2004. Hydrogen trap states in ultra high-stregth aermet 100 steel. Metall. and Mater. Transf. Vol 35A. pp 849-864./*ref*/Eliaz, N., Shachar, A., Tal., B., Eliezer, D. 2002. Characteristics of hydrogen embrittlement, stress corrosion cracking and tempered martensi te embrittlement in high-strength steels. Eng Failure Analysis 9 pp 167-184./*ref*/Fukai, Y., 1993. The Metal-Hydrogen System. Basic Bulk Properties. Springer, Berlin./*ref*/Galvele, J.R., 2000. Recent developments in the surface-mobility. Corrosion Science. 27 (1)p 1-33. Gangloff, R.P., Ives, M.V. 1990. First International Conference on Environmental-induced Cracking of Metals, NACE-I0, Houston, TX./*ref*/Groenevel, T.P., and ELSEA, A.R., 1972. Hydrogen Emnbrittlement Testing, ASTM STP 543, pp 11./*ref*/Hirth, J.P, 1996. in Hydrogen effects in metals, Eds., A.W.Thompson and N.R. Moody, The minerals, Metals. Materials Society pp 507-522/*ref*/Jones, R.H., (ed), 2001. Chemistry and electrochemistry of corrosion and Stress Corrosion Cracking: Symposium Honoring the Contributions of R.W Staehle. TMS, Warrendale. PA./*ref*/Kerns, G.E., Wang, M.T., Staehle., 1977. Stress Corrosion Cracking and Hydrogen Embritlement in High Strength Steels. In: Staehe, R.W, R.W., Hochman (eds). NACE, Houston, TX, pp 700-735/*ref*/Kim, J.S., Park, K., Lee, D., Lee C S 2003. Effect of lntergranular Ferrite on Hydrogen Delayed Fracture Resistence of High Strength boron-added Steel. National Research Laboratory Program of the Korea Ministry of Science and Tecnology. Pp 1-9./*ref*/Manning, J. R., 1973. Theory of diffusion. Difussion ASM 1-24./*ref*/Marsh, P., Gerberech, %V, 1992. Stress corrosion cracking of higt-strength steels. In: Jone, R.H. (Ed.). Stress- corrosion Cracking. ASM International, Materials Park, OH, pp. 63-90/*ref*/Meizoso, A. M., y Martinez, J.M. 2005. Propagación catastrófica de grietas. Cap 3. " Micromecanismos de Fractura"./*ref*/Nelson, H.G., 1976., Film-rupture of hydrogeninduced, slow crac growth in acicular alpha-beta titanium. Metal!. Trans, A Phys. Metal!. Maten Sci. 7A(5), 621-627./*ref*/Oriani, R. A. 1990. Hydrogen Effects in Highstrength Steels. In Gangloff, R.P., ¡ves, M,B. (EDS). First Internacional Conference on Environmental.induced Cracking of Metals, NACE- 10. NACE, Houston, TX pp. 439-447./*ref*/Oriani, R.A. 1967. Hydrogen in metals. Proc. Conf. Fundamental Aspects of SCC, (eds) R. W Staeh, A. J Forty D Van Roogen (NACE). Pp 32-50./*ref*/Oriani, R.A., Hirth, J.P., Smialowslcy, M., 1985. Hydrogen degradation of ferrous alloys. Notyes p Pub!. Park, Ridge. USA./*ref*/Rajan, N., and Howard, W., 1988. A mechanical anal ysis of hydrogen into metals during cathodic hydrogen chargin. Scripta Metallurgica. Vol 22, pp 911-916/*ref*/Serebrinsky, S., Carter, E.A., Ortiz, M. 2004. A quantum-mechanically informed continuum model of hydrogen embrittlement. Journal of the Mechanics and Physics of Solid. Vol 32. Pp 2403-2430./*ref*/Sieradzki, K., Newman, R. C., 1985. Brittle behavior of ductile metals during stress-corrosion cracking. Philos. Mag.A51 (1),p 95-132./*ref*/Smith, R.D., Landys, G.P., Moroef, I., Olson, D.L. y Wildeman, T.R. 2001. The determination of Hydrogen Dstribution in High-Strength Steel Welments. Welding Research./*ref*/Sofronis, P., 2001. Recent advances in the engineerirtg aspects of hydrogen embrittlement. Special number. Eng. Frac. Mech. 68(6), p 617-837./*ref*/Stroe, M. E. 2006. Hydrogen Embrittlement of Ferrous Materials. Doctoral Thesis./*ref*/Talsbot - Besnard, S., 1982. International Conference Proceedings on Hydrogen problems en steel. PP 37- 42./*ref*/Tien, J.K., Thompson, A.W., Bernstein, I.M, Richard,R.J. 1976. Hydrogen transport by dislocations. Metals Trans. A; 7A pp 821-900./*ref*/Troiano, A.R., 1960. The role of hydrogen and other interstitials in the mechanical behavior of metals. Trans. ASM 52, pp 54-80./*ref*/Turnbull, A., 2001. Modeling of environmental assisted cracking. Corrosion Science. 34(6), p 921- 960./*ref*/Zapffe, C.A and Sims C.E., 1941. Hydrogen Embrittlemen, Internal Stress andDefects in Steel, American Instante of Mining and Metallurgical Engineers, No.1307, pp.1-37./*ref*/Ziobrowski, C., Bruzoni, P., Hazarabedian, A., Ovejero, J. 2001. Influencia de los óxidos ene! daño por hidrógeno de un acero microaleado. Jornadas SAM-CONAMET-AS. pp 299-306.info:eu-repo/semantics/openAccessoai:ojs.192.168.1.71:article/6302020-01-17T14:06:13Z
score 13.982926
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).