ANALYSIS OF THE RELATIONSHIP BETWEEN POVERTY AND FOREST LOSS AT THE DISTRICT LEVEL IN PERU: APPLICATION OF THE SPATIAL AUTOREGRESSIVE MODEL WITH SPATIAL AUTOREGRESSIVE DISTURBANCES (SARAR)

Descripción del Articulo

Deforestation is a problem addressed both nationally and globally, which generates impacts on ecosystems and biodiversity, and these, in turn, can generate social and/or economic costs. The objective of this study was to geospatially analyze the social context that may exert pressure on forest loss...

Descripción completa

Detalles Bibliográficos
Autor: Ledesma Goyzueta, Luis
Formato: artículo
Fecha de Publicación:2025
Institución:Universidad Nacional Agraria La Molina
Repositorio:Revistas - Universidad Nacional Agraria La Molina
Lenguaje:español
OAI Identifier:oai:revistas.lamolina.edu.pe:article/2280
Enlace del recurso:https://revistas.lamolina.edu.pe/index.php/eau/article/view/2280
Nivel de acceso:acceso abierto
Materia:deforestation
forest loss
poverty
spatial regression
SAR
SEM
SARAR
deforestación
pérdida de bosques
pobreza
regresión espacial
id REVUNALM_edcab750806621b71f92273f247a89e6
oai_identifier_str oai:revistas.lamolina.edu.pe:article/2280
network_acronym_str REVUNALM
network_name_str Revistas - Universidad Nacional Agraria La Molina
repository_id_str
dc.title.none.fl_str_mv ANALYSIS OF THE RELATIONSHIP BETWEEN POVERTY AND FOREST LOSS AT THE DISTRICT LEVEL IN PERU: APPLICATION OF THE SPATIAL AUTOREGRESSIVE MODEL WITH SPATIAL AUTOREGRESSIVE DISTURBANCES (SARAR)
ANÁLISIS DE LA ASOCIACIÓN ENTRE LA POBREZA Y LA PÉRDIDA DE BOSQUES A NIVEL DISTRITAL EN EL PERÚ: APLICACIÓN DEL MODELO AUTORREGRESIVO ESPACIAL CON PERTURBACIONES AUTORREGRESIVAS ESPACIALES (SARAR)
title ANALYSIS OF THE RELATIONSHIP BETWEEN POVERTY AND FOREST LOSS AT THE DISTRICT LEVEL IN PERU: APPLICATION OF THE SPATIAL AUTOREGRESSIVE MODEL WITH SPATIAL AUTOREGRESSIVE DISTURBANCES (SARAR)
spellingShingle ANALYSIS OF THE RELATIONSHIP BETWEEN POVERTY AND FOREST LOSS AT THE DISTRICT LEVEL IN PERU: APPLICATION OF THE SPATIAL AUTOREGRESSIVE MODEL WITH SPATIAL AUTOREGRESSIVE DISTURBANCES (SARAR)
Ledesma Goyzueta, Luis
deforestation
forest loss
poverty
spatial regression
SAR
SEM
SARAR
deforestación
pérdida de bosques
pobreza
regresión espacial
SAR
SEM
SARAR
title_short ANALYSIS OF THE RELATIONSHIP BETWEEN POVERTY AND FOREST LOSS AT THE DISTRICT LEVEL IN PERU: APPLICATION OF THE SPATIAL AUTOREGRESSIVE MODEL WITH SPATIAL AUTOREGRESSIVE DISTURBANCES (SARAR)
title_full ANALYSIS OF THE RELATIONSHIP BETWEEN POVERTY AND FOREST LOSS AT THE DISTRICT LEVEL IN PERU: APPLICATION OF THE SPATIAL AUTOREGRESSIVE MODEL WITH SPATIAL AUTOREGRESSIVE DISTURBANCES (SARAR)
title_fullStr ANALYSIS OF THE RELATIONSHIP BETWEEN POVERTY AND FOREST LOSS AT THE DISTRICT LEVEL IN PERU: APPLICATION OF THE SPATIAL AUTOREGRESSIVE MODEL WITH SPATIAL AUTOREGRESSIVE DISTURBANCES (SARAR)
title_full_unstemmed ANALYSIS OF THE RELATIONSHIP BETWEEN POVERTY AND FOREST LOSS AT THE DISTRICT LEVEL IN PERU: APPLICATION OF THE SPATIAL AUTOREGRESSIVE MODEL WITH SPATIAL AUTOREGRESSIVE DISTURBANCES (SARAR)
title_sort ANALYSIS OF THE RELATIONSHIP BETWEEN POVERTY AND FOREST LOSS AT THE DISTRICT LEVEL IN PERU: APPLICATION OF THE SPATIAL AUTOREGRESSIVE MODEL WITH SPATIAL AUTOREGRESSIVE DISTURBANCES (SARAR)
dc.creator.none.fl_str_mv Ledesma Goyzueta, Luis
Ledesma Goyzueta, Luis
author Ledesma Goyzueta, Luis
author_facet Ledesma Goyzueta, Luis
Ledesma Goyzueta, Luis
author_role author
author2 Ledesma Goyzueta, Luis
author2_role author
dc.subject.none.fl_str_mv deforestation
forest loss
poverty
spatial regression
SAR
SEM
SARAR
deforestación
pérdida de bosques
pobreza
regresión espacial
SAR
SEM
SARAR
topic deforestation
forest loss
poverty
spatial regression
SAR
SEM
SARAR
deforestación
pérdida de bosques
pobreza
regresión espacial
SAR
SEM
SARAR
description Deforestation is a problem addressed both nationally and globally, which generates impacts on ecosystems and biodiversity, and these, in turn, can generate social and/or economic costs. The objective of this study was to geospatially analyze the social context that may exert pressure on forest loss or deforestation in Peru at the district level. The dependent variable of interest was the number of hectares of Amazon rainforest loss, recorded on the Geobosques platform, during the last triennial period prior to the COVID-19 pandemic. The method was based on a spatial analysis of discrete variation, where districts are defined as a set of discrete regions with irregular neighborhoods for each district. This paper presents the results of the spatial regression models SAR, SEM and SARAR, in order to show the level of association between forest loss and monetary poverty. According to the results, at the district level, forest loss presents a negative relationship with monetary poverty in the chosen model (SARAR). Therefore, it is important that programs that seek to improve the basic conditions of populations, mainly dedicated to agriculture, are also accompanied by technical assistance in sustainable practices in order to mitigate deforestation or land use change.
publishDate 2025
dc.date.none.fl_str_mv 2025-07-31
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv https://revistas.lamolina.edu.pe/index.php/eau/article/view/2280
10.21704/rea.v24i1.2280
url https://revistas.lamolina.edu.pe/index.php/eau/article/view/2280
identifier_str_mv 10.21704/rea.v24i1.2280
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv https://revistas.lamolina.edu.pe/index.php/eau/article/view/2280/3117
dc.rights.none.fl_str_mv Derechos de autor 2025 Luis Ledesma Goyzueta
http://creativecommons.org/licenses/by-nc/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Derechos de autor 2025 Luis Ledesma Goyzueta
http://creativecommons.org/licenses/by-nc/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad Nacional Agraria La Molinaa La Molina (UNALM)
publisher.none.fl_str_mv Universidad Nacional Agraria La Molinaa La Molina (UNALM)
dc.source.none.fl_str_mv Ecología Aplicada; Vol. 24 No. 1 (2025): January to July; 89-101
Ecología Aplicada; Vol. 24 Núm. 1 (2025): Enero a Julio; 89-101
Ecología Aplicada; Vol. 24 N.º 1 (2025): January to July; 89-101
1993-9507
1726-2216
reponame:Revistas - Universidad Nacional Agraria La Molina
instname:Universidad Nacional Agraria La Molina
instacron:UNALM
instname_str Universidad Nacional Agraria La Molina
instacron_str UNALM
institution UNALM
reponame_str Revistas - Universidad Nacional Agraria La Molina
collection Revistas - Universidad Nacional Agraria La Molina
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1843258431505432576
spelling ANALYSIS OF THE RELATIONSHIP BETWEEN POVERTY AND FOREST LOSS AT THE DISTRICT LEVEL IN PERU: APPLICATION OF THE SPATIAL AUTOREGRESSIVE MODEL WITH SPATIAL AUTOREGRESSIVE DISTURBANCES (SARAR)ANÁLISIS DE LA ASOCIACIÓN ENTRE LA POBREZA Y LA PÉRDIDA DE BOSQUES A NIVEL DISTRITAL EN EL PERÚ: APLICACIÓN DEL MODELO AUTORREGRESIVO ESPACIAL CON PERTURBACIONES AUTORREGRESIVAS ESPACIALES (SARAR)Ledesma Goyzueta, LuisLedesma Goyzueta, Luis deforestationforest losspovertyspatial regressionSARSEMSARARdeforestaciónpérdida de bosquespobrezaregresión espacialSARSEMSARARDeforestation is a problem addressed both nationally and globally, which generates impacts on ecosystems and biodiversity, and these, in turn, can generate social and/or economic costs. The objective of this study was to geospatially analyze the social context that may exert pressure on forest loss or deforestation in Peru at the district level. The dependent variable of interest was the number of hectares of Amazon rainforest loss, recorded on the Geobosques platform, during the last triennial period prior to the COVID-19 pandemic. The method was based on a spatial analysis of discrete variation, where districts are defined as a set of discrete regions with irregular neighborhoods for each district. This paper presents the results of the spatial regression models SAR, SEM and SARAR, in order to show the level of association between forest loss and monetary poverty. According to the results, at the district level, forest loss presents a negative relationship with monetary poverty in the chosen model (SARAR). Therefore, it is important that programs that seek to improve the basic conditions of populations, mainly dedicated to agriculture, are also accompanied by technical assistance in sustainable practices in order to mitigate deforestation or land use change.La deforestación es un problema que se aborda tanto a escala nacional como global, generando afectaciones a los ecosistemas y a la biodiversidad, y esto, a su vez, puede generar costos sociales y/o económicos. El objetivo de este trabajo fue analizar geoespacialmente el contexto social que puede generar determinadas presiones hacia la pérdida de bosque o deforestación en el Perú, a nivel distrital. La variable de interés o dependiente de estudio fue la cantidad de hectáreas de pérdida de bosque húmedo amazónico, registradas en la plataforma de Geobosques, en el último periodo trienal previo a la pandemia causada por el COVID-19. El método se basó en un análisis espacial de variación discreta, donde los distritos se definen como un conjunto de regiones discretas con vecindad irregular por cada distrito. En este trabajo se presentan los resultados de los modelos de regresión espacial SAR, SEM y SARAR, a fin de evidenciar el nivel de asociación de la pérdida de bosques y la pobreza monetaria. De acuerdo a los resultados, a nivel distrital, la pérdida de bosques presenta una relación negativa respecto a la pobreza monetaria en el modelo elegido (SARAR). Por ello, es relevante que los programas que busquen mejorar las condiciones básicas de poblaciones, principalmente dedicadas a la agricultura, también sean acompañadas de asistencias técnicas en prácticas sostenibles a fin de mitigar la deforestación o el cambio de uso de suelo.Universidad Nacional Agraria La Molinaa La Molina (UNALM)2025-07-31info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://revistas.lamolina.edu.pe/index.php/eau/article/view/228010.21704/rea.v24i1.2280Ecología Aplicada; Vol. 24 No. 1 (2025): January to July; 89-101Ecología Aplicada; Vol. 24 Núm. 1 (2025): Enero a Julio; 89-101Ecología Aplicada; Vol. 24 N.º 1 (2025): January to July; 89-1011993-95071726-2216reponame:Revistas - Universidad Nacional Agraria La Molinainstname:Universidad Nacional Agraria La Molinainstacron:UNALMspahttps://revistas.lamolina.edu.pe/index.php/eau/article/view/2280/3117Derechos de autor 2025 Luis Ledesma Goyzuetahttp://creativecommons.org/licenses/by-nc/4.0info:eu-repo/semantics/openAccessoai:revistas.lamolina.edu.pe:article/22802025-08-04T16:47:22Z
score 13.7211075
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).