Aplicación del BOOTSTRAP en métodos indirectos de estimación en muestreo estratificado
Descripción del Articulo
Actualmente, en muchos estudios de investigación de mercado y de opinión se utiliza el diseño de Muestras Complejas. Para resumir los datos de una variable cuantitativa obtenidos mediante este diseño, se puede hacer uso de una medida como la media. El cálculo de esta medida puede depender del uso de...
| Autor: | |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2015 |
| Institución: | Universidad Nacional Agraria La Molina |
| Repositorio: | Revistas - Universidad Nacional Agraria La Molina |
| Lenguaje: | español |
| OAI Identifier: | oai:revistas.lamolina.edu.pe:article/795 |
| Enlace del recurso: | https://revistas.lamolina.edu.pe/index.php/acu/article/view/795 |
| Nivel de acceso: | acceso abierto |
| Sumario: | Actualmente, en muchos estudios de investigación de mercado y de opinión se utiliza el diseño de Muestras Complejas. Para resumir los datos de una variable cuantitativa obtenidos mediante este diseño, se puede hacer uso de una medida como la media. El cálculo de esta medida puede depender del uso de variables auxiliares. Es decir, para estimar la media poblacional, se pueden utilizar diferentes estimadores y es necesario determinar cuál de ellos es el más preciso. El error estándar puede ser utilizado como un indicador que ayude a comparar la precisión entre ellos. El presente artículo se centró en la comparación de dos estimadores para la media en muestreo estratificado. Se utilizaron métodos indirectos de estimación. El primero es el estimador clásico por regresión lineal simple, y el segundo es una nueva alternativa a la que se denominó el estimador por regresión lineal simple bootstrap. Este último resulta ser el mejor. La implementación de los estimadores se hizo con ayuda del programa estadístico R. |
|---|
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).