Counting granules with u-net networks and connected components
Descripción del Articulo
This research develops a methodology to automate the process of counting the number of granules that remains in a toilet after being flushed (ASME A112.19.2-2018/CSA B45.1-18). This work integrates a U-Net convolutional network with a variation of the connected component algorithm. The training set...
| Autores: | , |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2022 |
| Institución: | Universidad de Lima |
| Repositorio: | Revistas - Universidad de Lima |
| Lenguaje: | español |
| OAI Identifier: | oai:revistas.ulima.edu.pe:article/5804 |
| Enlace del recurso: | https://revistas.ulima.edu.pe/index.php/Ingenieria_industrial/article/view/5804 |
| Nivel de acceso: | acceso abierto |
| Materia: | artificial intelligence computer vision neural networks automation inteligencia artificial visión por computadora redes neuronales automatización |
| Sumario: | This research develops a methodology to automate the process of counting the number of granules that remains in a toilet after being flushed (ASME A112.19.2-2018/CSA B45.1-18). This work integrates a U-Net convolutional network with a variation of the connected component algorithm. The training set consisted of 3678 images. Results show an accuracy above 98% between 0 and 180 granules. The methodology has been implemented in the production line. |
|---|
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).